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It is comronly known that in non~homogeneous media (phase velocity
dependent on location) refraction of acoustic signals occurs. Solving
the wave equation with variable ¢ is extremely involved and the cases
where solutions can be found do not give very nuch insicht into the physical
meaning of the problen.

Tae method of ray tracing, the solution of the eilonal enuationn, readily
adapts itself to non-homogeneous media and describes the propagation of
wavefronts. It has been used extensively in underwater acoustics but
not so nuch in atmospheric applications. Some reasons for the limited
use of ray tracing techniques in outdoor sound propagation are that
1) most acoustic work in recent years has been for underwater applications
due to Mavy sponsoring, 2) and also that very few simultaneous measurements
0of acoustical and meteorological data have been perforned.

- Atmospheric sound ranging techniques have in the past neglected verticle
velocity gradients. Ray tracing is a useful method in studying propagation
in air and can be used as an adjustment to sound ranging methods to

consider atmospheric variations.

Presented here {s a derivation of the eilkonal equation and 1its solution
with an attenpt to give physical reasons for this approach. &
conputer nodel of the technicue of ray tracing for atmospheric
applications (also an eigenrav nodel) has been develored and

some results are given using data collected in field nmeasurerents.
g
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I. Introduction

The concepts presented in this paper are by no means new.
It is hoped that the approach used will help to simplify and
clarify a study that has been complicated by mathematical gymnastics. The
theory presented is rigorous but the steps are logical and it 1s not
assumed that the reader is already familiar with ray tracing.

Ray tracing is an approach that was developed in the field of
optics. Geometrical optics, as it is called, has been used widely in
different aspects of acoustics. It is most commonly used (in acoustics)
in the specialties og fluid dynamics, shock theory , and
non~linear acoustics and called the method of characteristics.

The methodology in these specialties is different than for
sound propagation theory but the approach is very similar and
the equations take the same form.

Ray tracing techniques hgve keen used for many years in
underwvater sound propagation. In recent years many acoustic
approaches have been used in meteorology. Of these SODAR (SOund
Detection And Ranging) has been used to determine acoustic rays
and from resulting data to approximate temperature proftlesaunder
inversion conditions (increase of temperature with height).
The method of ray tracing has been promoted in the field of outdoor
sound propagation partially due to new interest in noise control.
In sound ranging applications the distance to the sound source is
different than simply the product of sound speed and travel time
in non-homogeneous media. Ray tracing is seen as a useful method in the
study of propagation paths in non~homogeneous media where refraction
is present.

A brief preosen at{ . will be given of the equations leading up




to the wave equation. The eikonal equation will be derived assuming
a series solution to the wave equation and taking the first

terms of the expansion. Solution of the eikonal equation

will be first done in the homogeneous (medium) case and then

in the non-homogeneous case. Discussion then follows concerning
caustics (high concentratiom of energy) and shadow zones (zones

of silence).

A general discussion of the computer models will be
presented and analysis of some data from field measurements
wiil be analyzed and discussed. For more information
concerning the use of the two computer programs see
Appendix C. Appendix A contains the listing of an eigenray
computer program which solves the eikonal equation for
rays that start at a given source location and pass through
a given receiver location. Appendix B contains a ray tracing
routine which takes source location and starting angles either
from the eigenray program or from some other source and
plots the resulting rays.

The present program package has been designed to analyze
ray paths over a flat terrain with specified vertical temperature
and wind profiles. Attenuation because of spherical spreading
and atmospheric absorption has been included.

Work is progressing to include ground effects and
variable topography in the package. An eigenray routine
designed for underwgter use called CONGRATS (CONtinuous Gradient
RAy Tracing System) is being revised for atmospheric work.
CONGRATS fits a continuous gradient to a discrete profile
input. The final routine will also include the ability
to change the temperature and wind profiles in a path.




Ii. Ray Tracing Theory
A. Derivation of the wave equation

For the sake of completeness the place t;vbegin this study
is with the basic equations leading up to the wave equation.
The potential velocity ¢ is defined by

v ey s | (1)
The approach presented here is constructed around the potential
velocity but it i{s noted that it can be developed around other
quantities such as velocity or pressure equally as well.

The second equation needed is a statement of Newton’s
first law, that stress is equal to the negative of momentum
flux. This is called Euler’s equation and has the form

w = -p v/t
Substituting equation (1) here and after minor manipulation,
Euler’s equation for potential velocity becomes

P=<-p 96/ ot + constant (2)

The state equation Lsoa statement that pressure is a
function of density If expanded in a series around the ambient
density and only the first two cterms are retained the linearized
state equation becomes

Pp=P(p) p
where po is the ambient density. P‘(po)is equal to the square
of the propagation speed. So

P = Czp (3
is the linearized state equation to be used.

The final equation necessary to derive the wave equation
is a statement of conservation of magss called the contiauity
equation. It states that the net flow of mass into (or out of)
a volume 1is equal to the net change of mass in that volume and

has the form

LN SR NN T SR




-l

-
7.v=<=1/g 3p/dt
o
Substituting from equation (3) for p and from equation(l) for v,
this equation becoges 2
Vb=~ 1/(poc ) 3p/dt
And substituting for p from Euler’s equation (2) the wave
equation results
2 2 2 2
vVé=1/c 3 $/3t %)

B. Derivation of the eikonal equation

The eikonal equation is a transformation of the wave equation .
describing, instead of the wave itself, the propagation of wave
surfaces or wavelconts. Rays may be considered as packages of i
acoustic energy travelling normal to the wavefronts. Wavefronts
are the loci of points which undergo the sawe motion at a given
instaat. .

Rays in this theory are somewhat equivalent to characteristics

in the method of characteristics used in both non-linear acoustics
and shock theory. The difference is that characteristics take
the role in these other specialties as carriers of discontinuities.
The theories are very closely related. In section C a solution to
the eikonal equation is developed using techniques typical of the
uethod of characteristics.

To derive the eikonal equation we begin by defining the wavefroat

by the equation

S(x,t) = 0 (s)

-» A A A

where x = xli + xzj + x3k. In this analysis S has the dimension
of time and for a fixed point can be thought of as the difference
between the time that has past and the time necessary for the
wave defined by ¢ to reach that point. Therefore for

S(;.t) <0
it {s seen that

b(x,0) = 0

T ———————
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Since S {s constant in reference to a location on the wave
(e.g. the wavefront), ¢ can be expanded in a series (Taylor)
of the form
o -+ n
2: @ (x) S /n! SH>0
a=0 n
- (6)
0 S<0

>
It will be seen later that © (x) represents the variation in

magnitude of the wave, or chg factor of spreading loss.
It is intended that the series solution will be substituted
into the wave equation in order to obtain equations for S and & .
The sceries of equation (6) is chosen due to the property that
when derivatives of ¢ are taken the derivatives of
H = Sn/n! -

n
are simply H , le.
n-1

H'(S) =H (8)
n n-1

Since the wave equation has two derivatives the form of H for

n
negative n must be considered. If equation (6) is rewritten as

> >
6 = 2 o (x)H(S) )
n=() n n
and H (S) is defined as
n
Sn / n! $>0
H(S) =
n
0 S<0

it is noted that H (S) is simply the Heaviside function and

the H (S) are simply its integrals. Therefore, using
n

B e e o
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generalized functions, H (S) for negative n can be defined where
n

H_ (8) = 8(8)
and
H_z(S) = §'(s)
etc.
Taking derivatives of equation (7) yields

b < - S
¥ oT emn () °

— =0 n o~1 -
at ot
2 2 2
b <= > 3S 3 S
9 = 8 (x)X H (S) +H (S)
2 n=0 n n- - n-1] "
o t t at

V=2 (Y0 H(S)+0 U (S)VS)
n=0 non n 1

n-

2 — 2
vb-vae H(S) +2%@-(H (S) 9S)
n=: non n n~-1

2 2
+0 I (S)(Vs) +e H (S) Vs
n 2 n n-l

n-

And therefore the wave equation becomes

- 2
2 1
T @ u ()l -
n=0 n n=2
c \3t
2
2 138
+H (S) vS - 8 + 2v8 .98
n-1 "2a 2 n n
[ t

2
+9Ve H(S))=0
nn




Grouping like terms gives

2
{ 2 1 98,
(vs) - e H
'2(—')} 0 =2
c

at

+ {[(VS)Z - _Z(ia_s_ )2] e1 + zver; vs + [vzs - _1_72_2;] eo}u_l

1
c t cot
+ * . L]

In general, the wave equation will be satisfied if the coefficients
of H , U etc. are equal to zero. In this analysis only the first

two coefficients are considered. Therefore
2
2 1 S
(vs)" - _) =0 (8)
c 3t

2
Jz 13 s
2V0 - VS + <9 § =~ e =0 9)
n ( ‘2:;‘2 0

c 3t

and

Equation (8) is called the eikonal equation. Its solution leads

directly to the concept of rays since it describes the motion of the
->

surface S(x,t) = 0. Rays are defined as the path normal to the wave

surface.
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C. Solution to the eikonal equation
l. General Discussion
To get a general feel for rays and what the eikonal equation

says, a perturbation approach is in order. First of all
the unit normal to the surface S is given by

A -9S
r= " (10)
1 VSI

Considering an initial position of the wavefront depicted by
-
S(x N3 ) =0 (ll)
00

and slightly perturbing all of the variables of space and time
the surface is then defined by

-
S(x +Ts,t+0¢t) =0 (l1a)
0 0

Then a derivative may be approximated by a finite difference
between equations (1la) and (11). The result is

A
VS As +3S At = 0
gt

and the ray velocity (normal to the wavefront) is then given by

-35
Ua s =

A
At+0 At r9s

A
Substituting for r froam equation (10) yields

ds = $/3t (12)
de 19S1

From the eikonal equation (8) we see that
ds/dt = +c




&

-Qu

Therefore we can say that the eikonal equation in general
says that a wavefront has a normal velocity or the ray has

a velocity of magnitude +c. This may appear to be a trivial
result but its importance is that this does correspond
directly to the solution of the wave equation. It means
that no matter what changes in direction a wavefront

may undergo it will propagate, in isotroplc media, at the

characteristic phase velocity of the medium at its location.
2. Homogeneous, isotropic media

By homogeneous, it is meant that the propagation velocity
¢ is constant with respect to location and time or equivalently
that temperature: is constant (isothermal condition) and there
is no wind. Isotroplc conditions imply that ¢ is the same
regardless of the direction of propagation. This is one of
the simplest of cases. The solution shows the equivalence
of the eikonal equation under conditions that will be
demonstrated later to the wave equation. It is common to
consider homogeneous, isotropic media when solving the wave
equation but the power of the ray technique is seen best when
these conditions are relaxed.

Specifying the wavefront S as

-

4
S(x,t) = ¢t - u(x) =0 (13)

> -+
{t can be seen that u(x) locates the wavefront at x for various

times. Substituting this into equations (8) and (9) yields

> 2 2
(Vu(x)) = l/e (l4)

- 2
and Zvu(x)~700 +V e0 =0 (15)
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Solving equation (14) then gives a solution to the eikonal equation.
Consider now the change of some quantity along the ray, ie.

the first derivative in terms of the distance s, d/ds. vu(;) is

normal to the wavefront. Equation (14) says that cVU(;) is unity

and therefore this represents the unit normal to the wavefront.

Multiplying this quantity by the change aloang ; once again yields

d/ds 1ie.

d() = cWur 7() (16)
s

This equation says that the change along the path is equal to the
change normal to the wavefront. The so called characteristic equations
are all derived directly from equation (16). These are the derivatives
with respect to s of ;, Vu, and u. Therefore

>

dx = cVu (17)
a8

And since Vu is constant from equation (14)
dVu = cVu (V:(Vu)) = O (18)
ds

and

2 2
du = ¢(Vu) = c/c = (19)
a8

1
T
Since Vu is normal to the wavefront, equation (17) shows that the
rays are also normal which is how we initially defined rays. It

is noted that in anisotropic media the rays are not necessarily
orthogonal to the wavefront (see section II-C-9) . Equation (18)
says that Vu is constant along the ray. It is concluded, therefore,
that the rays are straight lines, fe. Vu is constant and c {s
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constant, therefore from equation (17), the path along the ray and
the vectorial distance vary by a constant and the rays must be

straight lines. Equation (19) integrates to

u= g/c (20)

which neans due to equation (13) that for any time t > 0 that the
wave surface t = u = g/c is at a distance ct along the ray, ie.

s = ct. These equations together state that rays can be constructed
by drawing straight lines from the initial wavefront. Figures 1

and 2 are examples of this construction showing a spherical source

and a plane source, respectively.

3. Energy conservation and attenuation due to spreading
It is noted that equation (15) can be rewritten as
2
9: (Yu 90) =0 (21)

This is in a divergence form which usually indicates the conservation
of something. It is common to think of this as an equation

showing the coanservation of energy. If we consider a flow from the
wavef ront Hl at time u = 0 to the wavefront W_at time u = t as shown
in figure 3 and integrate over the volume defined by a narrow tube
between the wavefronts we will obtain the constant energy flux law
and be able to find the attenuation due to the rays becoming less
dense (1e.6spreading loss). First we use the divergence theorem
defined by

= RS OAPP B AIGTRRy  ~  *

-~ e~
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Figure 1| - Propagation from a spherical source in an homogeneous

isotropic medium
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Figure 2 - Propagation from a plane source in an homogeneous

isotropic medium
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Figure 3 - Ray spreading
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A

- -+
j]' ‘F dv = j]'A'ndS
v S
on the volume integral of equation (21) and obtain

2 A
(Vu® ) a=20 (22)

1l 0

S

A -+
On the sides of the narrow tube (see figure 3) n and Vu are
orthogonal and therefore
A
Vwa=20 on the sides.

A

On Uz and wl, n and Vu are in the same and opposite direction

respectively, therefore

A
Yu.n = | V4 on W
| v 2
= -]Vul on W
1
Also from the eikonal equation (la)
[vu| = 1/¢
Therefore equation (22) is equivalent to

2
19 ds =0 23
Tz o (23)
W
2
and 2
- Héeo ds = 0 (24)
W
1

and since c 1s constant in this case we may say
2 S 92 S
118,88 58,4

W W
1 2

T Y S o
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If we assume that we are integrating over a small package of rays
with cross-sectional areas AAI' and AAZ on Wl And wz respectively,

the integrals may be approximated by
2> 2+
Oo(xl) AAl - Go(xz) AA2
This gives in the limit as jJA and pAA go to zero
- - 172 -1/2
8 (x )/8 (x ) = (dA /dA) = (dA_/dA ) (25)
0 2 01 I\ 2 2 1
The acoustic ray is the path of propagation of acoustic energy.
Equation (25) means that divergence or coavergence of rays indicates
decreasing or increasing energy concentration, respectively. For
example in plane waves
dA /dA =1
2 1

ie. the cross-sectional area of a bundle of rays stays constant
along the propagation path and the rays are parallel. This indicates

that

8 = constant
0
or that there is no spreading loss. For cylindrical and spherical rays
dA /dA =R
2 1
2
dA_/dA = R
2 1

respectively. After substituting into equation (25) we have
-1/2
aoix R for cylindrical rays

and |

eoof R for spherical rays.
These terms are consistant with spreading losses associated with wave
phenomena. In a non-homogeneous med{um the losses will be similar.

A ratio of sound speeds at one wavefront to the other will
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be included (ie. ¢ = ¢(x,y,z)) but we may assume that the

ratio will be near 1 and therefore can use the previous equations
for 90 as the spreading factor. (See section III-A for a more
precise spreading factor dependent on range rather than the

distance travelled).
4, Prediction of Caustics

The examples presented in the last section for equation (25)
concerned divergent rays and therefore showe. :xamples of
spreading loss. Another effect predicted by equation (25)
is that of caustics. Caustics arise when an initial
wavefront is concave away from the direction of propagation
causing a focusing effect as in figure 4. The cusp
shaped envelope i3 called a caustic. The region inside
the envelope is triply covered by rays and energy is
concentrated. On the caustic neighboring rays touch each
other and therefore the bundle of rays described in
the last section has a cross~sectional area of zero ie.

dA /dA =0
2 1
which predicts froam equation (25) that
e-m
0

Caustics or points in space where there is infinite
acoustic energy are also predicted by the wave equation.
The question here is whether the linearized wave equation (4)
applies in this case. It should be recognized that at
caustics there is high acoustic energy concentration but
because of non-linear effects it 18 not infinite.

Caustics will also be evident in non-homogeneous and
anisotropic media but are not as easily described as the

cusp shaped envelope which arises in homogeneous, isotropic
media.
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5. Noo~homogenous, isotropic, stratified media

By non-homogeneous it is meant that the phase velocity

depends on location ie.
¢ = c(x,y,2)

In most cases ¢ is considered as a function of height only,
but for comparigson the more general equations are preseanted
and then the equations for the simpler stratified case.

The only difference in the eikonal equation (14) is
that ¢ is no longer constant. Using eqwv- tion (16) will still
give the proper characteristic equations for d;7ds, d qu /ds
and du/ds as

-
dx = ¢ (26)
s ™
d ( ) 1 ( )2
u = cqu(g-yu) =1 cy-
ds z w

and because of the eikonal equation (14)

X -2
dgu = |l cg-(c ) = =¢ 3¢
dgu = L cv _;v
ds 2 c
therefore
dw = - ge (275
ds c
and 2
du = ¢( =c =] (28
du u) I § )
ds c c

Since gu is normal to the wavefront equation (26) like equation (17)

says that the rays are also orthogonal to the wavefront.

v IR B WL £ 5wy
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However, equation (27) is different than equation (18) and

says that cwu is no longer constant on a ray path and the
combination of these two equations says that the rays bend

around in response to the gradient of the phase velocity (wvc).

The negative sign in equation (27) indicates that the rays bend
toward a region of lower velocity. Solving equatioas (26) and (27)

simultaneously, gives the rays and equation (28) gives the travel

time by
u'fgg_ (29)
>
c(x)
along ray

In a stratified medium these equations simplify considerably
so that they are more easily solved. In this case the phase
velocity depends only on height ie.

c = c(z)

The characteristic equations become

->
dx=cy u d2=cvu (30)
X,y z
ds ds
dy u o d9u =yc¢
X,y = 2 = 2z
T4 (31)
ds ds c
du = 1
- = (32)
ds ¢
->
where x and ¢ are the horizontal components and gradient

XY
respectively, and z and ¢ are the verticle component and

z
gradient. From equation (31) § u is constant and fron
X,y
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-
equacion (30) we see that dx/ds gives the angle from the

horizontal that the ray makes as

-

dx =cos 8 =¢(z) 7 u
3% 4

ds

If a subscript zero refers to an initial point we have

cos 8
7 u= 0 (33)
X,y
c
0
and since ¥ wu is constant we can write the equation
X,y
cos 8 = c(z)
(34)
cos © c .
Q 0

which 13 Snell’s law in optics. From the eikonal equation
we know that
2 2 2 2
(9 u) +(Pu) = (W) =1/c
X,y z
and substituting from equation (33) gives
1/2
Vus= 1

l -
2 ! cos ©
U e (2) <, )

(35)
to solve for rays the ray equations (30) may be combined into
-
dx = ¢ u
x‘z
L¢3 [V}
z
Substituting equations (33) and (35) and integrating yields the

equation

+ c(z) cos ® /c
X - xo - 0 0O dz (36)

rs 7T 112
(l=¢c (z)cos @ /c )
0 00

ae B AR P e TYT (12 ¢
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which describes a ray with initial angle 90 at a point (xo,yo,zo).
From equations (32) and (30) the ray travel time is given by
z
u-fds - /‘dz
as &
c c Vu
z 2z
0
or
z
u-f dz Q37
p4 Z 27172
c(z) (1L = ¢ (z) cos © /c )
z0 0 0

These last equations (36) and (37) are the basis of the model
presented in this paper. In the next section the question of when
the eikonal equation is valid is considered followed by a section

which discusses two particular phase velocity distributions.

6. Conditions of validity of the eikonal equation

It is emphasized that the eikonal equation is only an approximation
to the linearized wave equation. The word linearized is stressed so
that one i{s aware that the wave equation itself is not always valid
and certainly an approximation to it would not be valid under
non-linear conditions. One of these conditions, that resulting

in caustics, has already been noted in section II-C-4.
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In this section an harmonic solution tp the wave equation (4) is
considered and substituted, resulting in the eikonal equation with
some descrepancy. Making this error small is the condition sought,
so that the eikonal equation will be a good approximation to the wave
equation.

First the assumption is made that the solution is time harmonic
only if the wave has reached the spatial coordinate specified. The
wavefront S as defined in equation (13) is an appropriate time
frame to consider. It is also assumed that the amplitude of the
wave may vary in space due to variations in the medium. The

solution is then of the form

+ -
g = A(i) exp(juS(x.t))_’ )
= A(x) exp(jw(t = u(x)))

Substituting into the wave equation (4) the resulting equation is

2 2 2 2 2 2
VA-wA(Vu) = j(20YA'Vu + wAV u) = =u A/c
Separating the real and imaginary parts yields
1 VZA + (¢ )2 1 0 (38)
- “ - -
-z 4
w A c
and 2
Vu+2 VA Vu=0 (39)

A

For u to be a solution to the eikonal equation the first part

of equation (38) must be zero. This will be so if the amplitude
of oscillation A is constant or linear in which case the second
spatial derivative of A would be zero; or if the frequency

is infinite. In general neither of these assumptions can be nade.
The previous condition may be relaxed by making the first term
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in equation (38) much smaller than the second {e.

2 2
7 A < (%u)
-z
w A

Using the eikonal equation (l4) this becomes

22 2 2
e VA=) V94 K1
-z (40)

w A 2n A
for convenience the gradfent of a function will be defined over

the distance of one wavelength so that

VF = AF/ ) (al)

This will transform equation (40) into
y 474 «1 (42)
A
If this condition is met, u is a solution to the eikonal equation.
For u to also be a good approximation to the wave equation or
rather for the ray solution to be a good approximation to the
wave solution, equation (39) must also be satisfied or

2
Vu=<29A-Yu=-2Y9

va 1
A A ¢
and from equation (42) this gives
2
- 24 &V uKl1 (43)

Taking the gradient of the eikonal equation (14) we have
2 -3
2(Vu) P u==2c¢c Ve
or using the square root of the eikonal equation
2

Vus=s=9¢
=
c
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Substituting ifato equation (43) we have
\ A% «I1
c

or from equation (41) and knowing that changes in ¢ are small

4 Y% << V¢ (44)
This is the condition sought. It states that a solution to the
eikonal equation will be a good approximation to a solution of
the wave equation if the change in the gradient of the phase
velocity over a wavelength is small compared to the gradiemt
itself. Therefore ray solutions are valid if there are no

large changes or discontinuities in the phase velocity profile.
7. Formation of a shadow zone in a stratified medium

It was shown in section II-C-5 that rays bend toward areas
of lower phase velocity. From this simple concept it can be
surmised that if there exists a maximum phase velocity at some
height z above a source that a shadow zone will be formed.

A shadowmzone is an area where no acoustic energy penetrates.
More specifically, rays near the height z will bend either
upward or downward away from that height.m This is illustrated
in figure 5. The limiting ray which defines the boundary of
the shadow zone is that ray which becomes horizontal at height
2 » This ray is often called a split = beam ray since it nmay
b: bent upward or downward and theoretically is handled by
considering that it goes both ways.

From Snell’s law, equation (34) we have that

-l -
®@=cos (ccos ® /c)=cos (ccos®/c) (45)
o 0 o m
So that as ¢ increases ie as the ray nears height z , & will

m
decrease. So that this equation is defined for all values of @

e e
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Figure 5 - Formation of a shadow zone
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and ¢, ¢ can be chosen to be the maximum phase velocity and @
the angl: at the height associated with ¢ . .
In general, if the initial angle of : ray is zero, equation
(45) says that the ray will not be horizontal again umtil it
reaches a level with ¢ = co. In figure 5, if the initial angle

® >cos c /¢ (46)
0 0O m
then 8 will be greater than zero and the rays will penetrate the
m
level of maximum sound speed and continue upward. However, if
-1
@ <cos c /¢ (47)

0 0 m
the cos © increases to | and 8 decreases to zero at the height of
z defined by the equation

c(z) = ¢ /cos © (48)

0 0

At this point the ray bends downward.
The critical ray is the split - beam ray. This results when

e =0
n

which occurs when

1
® =cos (c/c) (49)
0 00 m

A critical distance along the ground may be defined where the
split - beam ray intersects the ground. It is iastructive to use
a case as in figure 5 where the velocity gradient is linear up to a
maximum velocity. Equation (36) gives us the distance travelled
in integral form Placing the sound source on the ground sets z0 =0
and we can define xu = 0. The phase velocity is then

c=c +c az
0 0
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ie. there is a linear velocity gradient. Equation (36) then
becomes
z
X = A(l + az) dz
ra Z 172
(1 -A (A+az))

Where A = cos 60. Setting r = 1 + az and dr = adz gives
l+az
X = A r dr

Z 2172
a(l-Ar)

22
= 1 (~(1-ATr

aA

1/2 l+az
"

1

After slight manipulation this reduces to

2.1/2)2 2
x=1 (1=-4a") }+z+_l_ -1
L Z 2
aA

a a A

which is an equation for a circle. Substituting for A gives

] X = tan 00-2 + .z +1 2 = 1
e SR -

a a a cos &
0

which 18 a circle centered at

(tan © /a, ~1/a)
0

with radius
R=1/a cos ©
0
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This means that for a linear velocity gradient rays will follow
the arc of a circle.
For the distance travelled along the ground, z = 0 and
2
tan 1
0

1
X - = -
{ } z < -z
a a cos 90 a

= ] 2
tan 6
o
a
Therefore the ray travels horizontally
2 tan 6
x= 0 (50)
a
before reaching the ground again. Using equation (49) for Godefines
this distance for the critical ray by

-1
2 tan (cos A(colcm)) (50a)

a

where a is the slope of the velocity profile.
Actually rays from the source may penetrate the shadow zone by

multiple reflections off the ground. If in addition there exists

a local maximum characteristic velocity above the maximum ¢ ,

rays may again be bent downward into the shadow zone. For : more
precise treatment one must include the effects of diffraction
which are not readily defined using rays. However, the existence
of shagog zones has been experimentally observed as low intensity

zZones.

¢ AT IO TS ¥ it n
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8. Waveguides

Waveguldes result from the existence of a raised minimum
velocity. This is illustrated in figure 6. The derivation of
this result is similar to that for the shadow zone. If the
initial angle is specified by equation (46) the ray will
penetrate into the region of higher velocity. However if
equation (47) describes the initial angle the cos 6 will
increase to 1 and © will decrease to 0 and the ray will
bend downward. At this point the ray crosses the minimum
value of ¢ again and will repeat the pattern symmetrically
about the height of the minimum.

Waveguides are important in a discussion of ray theory
since it allows a ray to propagate for a long distance
without reflections and probable losses from ground

interactions.
9. Anisotropic, homogeneous media

In anisotropic media the phase velocity is dependent
on orientation. A simple example is when sound propagates
in a wind. The sound speed will be greater in the direction
of the wind than orthogonal to it. The eikonal equation (14)
still remains in the same form, with the phase velocity

now a vector, ie.

s 2 > 2
(w(x)) = 1/(c) (51)
In this case only homogeneous media are being considered so 3 is

constant. The characteristic equations arise from equation (16)

S S



Figure 6 = Formation of a waveguide
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in the following form,
<>
dx <> <>
__=c(VW-I) (52)
ds
d%u
=0 (53)
ds
>
du dx > >
= Y. = Yu-c(Vu-I) (54)
ds ds

Equation (53) says that the gradient of u is constant making the
rays straight lines as would be assumed in a homogeneous medium.
However, the ray direction specified by equation (52) will be
parallel to the wavefront normal if and only if

Z a Vu

This will be true if and only if

(* v )2 F( 2ol s 2) (55)
. = +
e pl p2 p3

where the p ‘s are the components of Vu and F specifies some function.
Equation (55) says that the rays are normal to the wavefront only
in isotropic media.

Integrating equation (54) and substituting u = t locates the

wavefront at successive times ie.

> >
u = s%W.c(Vu-l)

or
t
s = (56)
—_—
Yu-c(Vu-I)

The vectorial distance is specif ~d by integrating equation (52) as

+ -+ >
x = gc(Vu-1) (57)
From equations (51) and (57) the unit vector in the direction of
the ray is
-> -+
c(%u-I)




o
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Equation (12) gives the velocity normal to the wavefront as
ds 1 1

- - - c

— ——

de (9s) 1Yul

Therefore the unit vector normal to the wavefront is

cVu
The angle m between the normal and the ray path can then be

given by

+ >
cos m * c(Wu-I):-(c%u) (58)
Using just the individual components of the vectors in this
expression will give the angles in each plane. Using
expressions (58) and (56) the distance along the ray may
be specified by

ct
s = (59)

cos m

This equation says that the wavefront moves along the ray with

speed ¢/cos m which is greater than c.

- A TY AT 5 W
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ItI. uorputer liodel Description

A. Pasic development of ecuations

In the previous sections ray - theory has been
developed and discussed. This section is devoted toward
technicnes used in the development of conputer programs
fror the ecquations derived. There are two types of
orocrans to be described. These are 1) graphic ray
tracing programs and 2) eifenray programs. In both
types of programs the sound velocity profile must be
specified.

Since the sound velocity as a function of height is not
easily measured other related units rmust be measured. The
sound velocity is directly proportional to the square

root of absolute temperature as given by

"
¢ = 20.05 (T)

where ¢ 1s in meters per se%ond and T i{s {n degrees Felvin

(= decrees Celsius + 273.2). Since this refers to propagation
relative to the medium we must include the wind velocity in
this forrulation so that the ecuation specifies propagation
relative to the ground ie.

1 /N
S

c = 20,05 (T) 4+ uv (60)
The factors T and ''V can be measured using thermistors and
aneroneters, resnectively and the vectorial direction of the wind
usiac a bl - vane. Therefore the phase velocity as a function
of nheicht may be specified.
In the developrent nof the characteristic equations it
was necessary tn use the vertical phase velocity ecradient ziven

by dc/dz. In nodeling technimes it 1is usual to use a linear

—_ e —
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difference approximation to derivatives, therefore
c -c
g1 = i+l i (61)
2z -z
i+l i
where g is the gradient. Using many segments for the gradient
will approximate a smooth curve fairly well and therefore other
difference forms (e.g. logarytimic) are not used. It is
intended, however, that for a small number of values of
T and WV, to include equations from meteorological theory
to interpolate other values. The present model does not include
these interpolation methods.
The assumption for the model is that instzad of a simple
stratified medium, the medium is divided into layers and
each layer has a linear gradient. We can therefore use
the equations developed earlier to derive equations for each
layer and follow individual rays from layer to layer.
Three cases must be considered: 1) the isovelocity case,
2) variable velocity when the ray penetrates the layer and
3) variable velocity when the ray is refracted back towards
its entry level. The isovelocity case is really simply the
homogeneous case discussed in section 1I-C-2. In this case
g = 0 and the rays are straight lines. If D f{s the thickners
of the layer and ® 41is the angle of the ray upor entering the
layer the change Lé the x distance will be defined by

DX = D cot 91 (62)

From equation (20) the travel time is Ziven by

2 2 1/2
DS (DX + D)

—

(63)

(4 c
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Horizontal rays in a homogeneous layer present a special case
that will not leave the layer and will travel straight.

When the velocity changes with height and the ray penetrates
the layer equation (36) may be used to find DX. In this case
c(z) = gz. Letting k = cos Gi/ci we have

z
i+l .
2z
DX -.Ir 8 dz
Z 1712
(1 ~ (gzk) )
z
i
z
i+l
1 2.1/2
= (1=~ (gzk) )
k FA
& i
z
1 i+l
= _ sin 6(2) I
k z
g i
1
= (sin © - 8in 8 ) (64)
- i+l i
gk
In this case the travel time is given by equation (37) as
z
i+1
dz
DT =
J( Z I/2
P 8z(l - (gkz) )
i
z
i+l
2 1/2
1 1 + (1 - (gkz) )
=~ In
(4 gkz
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z
i+l
1 1 + sin 6(2)
DT =~ In
'3 cos 9(z)
z
i
1 (1l + sin @ )(1 ~ sin © )
DT = 1in i i+l (65)

2g (Ll +8in® )(I - sin 8 )
i+l i

The third and tinal case 1s when a ray is bent around and returns
in the direction it entered the layer. First, it is noted from
equation (48) that if the ray becomes horizontal at a point where
the phase velocity is given, the highest value of z is defined by

1 c
c(z) = gz = = i
Kk <cos BI

Second, it was shown in section l1I-C-7 that rays travel in a
circular path. Also, the ray may turn before reaching the edge
of a layer. Theretore, since there is circular motion, the

height attained in a layer is given by

1
DZ = (1l - cos 61) (66)
gk
z
= i -z
i
cosg O

where 61 and z are measured at the entrance to the layer. If
this difference is greater than the thickness of the layer, the
ray will not be bent around in that layer. If DZ in this equation
is less than D then DX is defined by equation (50)

2 tan @
DX = i (50)
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where a is the slope of the gradient given by

sca
gi i

The time DT can then be found using equation (37) with limits of

integration z and z + DZ and doubling the result since the ray
i i

must return to its entry height. Therefore,

1
DT = _ In

8

1 -8in ©
i (67)

1 + 9in ©
i

Equations (62), (63), (64), (65), (66), (50) and (67) form
the basis of the computer models. The total horizontal distance
and time the ray undergoes, x and t, are found by adding all the
DX’s and DT’s, respectively. The actual distance the ray travels, s,
is given by the sum of DS’s where

2 2.1/2
DS = (D + DX ) (68)

for the homogeneous case, or because the radius of curvature is
defined by

ds
.—-R
de
and R was given in section 11-C-7 as
1 cos 6
R= =g i
i
a cos 8 c
i i

therefore for the non~homogeneous case

cos ©
DS = g i (8 -98) (68a)
i 1+1 i

¢
i
In the case of atmospheric sound propagation there are only reflections
from the ground. Ground reflections are specular and handled by
taking the negative of the angle of incidence.
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The first type of program, graphic ray tracing, is coastructed
from these equations and includes the reflections. The remainder
of this program consists of graphics techniques.

Input to the ray tracing program includes the temperature and
wind profiles and the location and angle of the sound source. For
rays travelling upward it is also necessary to include a maximum
height that is to be considered. This height can sonetimes be
conveniently chosen just above a raised {nversion, (velocity is
greater at a greater height). Appendix B contains a graphics ray
tracing model.

Eigenray routines find rays that travel from a source location
to a specified receiver location. This is accomplished by searching
a range of angles and using a bisection method to zero in on the
angle at the source. The program follows many rays by the method
used for ray tracing and internally varies only the source angle
until a solution is found. Once this is completed the sound field at
the receiver may be agscertained.

In the prediction of the sound field one must f{nclude the effects
of absorption and spreading losses. To obtain the intensity spreading
loss a solid angle Q1 is defined with symmetry around the z—axis so that

dQ2 = 27 cos 6 d6
0 0

where the angles are specified in figure 7. The unit of intensity
will be defined by the ratio of di to the area dA swept out by the
wave surface. From figure 7 this is
da 27 cos B 4O

= 0 0

dA 27 x sin ehdx

i =

cos & 4o
- 0 O (69)

x sin 0 dx
h




g B—

Figure 7 - Specification of solid angle and spreading
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The horizontal range x is a function of the height h and initial
angle 60 therefore, the horizontal unit of range is

Ix
dx = de

36
0
Substituting this into equation (69) and taking the reciprocal of

the resulting function will yield the loss. On a log scale this is

x sin®@ 3x/36
L = 10 log h 0 (70)

cos 8
0

Equation (64) is used to find an expression for sxlaeo. It was said
that x is the sum of the DX’s, therefore

n
ax c sin © sin € - sin @
= 0 0 2 : i i+l
- —Z
EX:) cos 6 g
0 0 i
i=0
c 1 LY}
+ 0 } :___ cos 8 i - cos 8 i+1
cos 8 8 1 %e 1+l de
i 0
i=Q
n
c sin 6 1 cos & cos & J6
= 0 0 8in ® -~-sgin ® + i 0 i
—_— - i i+l -
cos € g sin 6 Y]
o i 0 0
i=Q
cos 6 cos & J6
- i+l 0 i+1 (71)

sin 36
0 0

If we differentiate Snell’s law, equation (34) we have
3e ¢ sin @ sin ® cos @
0 i

~i=_1 U
de c ein ® cos @ sin @
0 0 i 0 i
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Substitution into equation (71) and after slight manipulation we have

n
ax c sin @ 1 1 1
= 0 0 A -
————T—_— ——
e cos 6 g \sin 8 sin O
0 0 i i i+l
i=0
n
sin @ DXi
= - 0 } : (72)
cos O in® sin @
0 i i+l
10 1=0
using equation (64). Therefore the intensity spreading loss is
n
x sin 8 sin @ DX
L = 10 log n+l 0 i (73)
z
cos © sin © sin ©
0 i i+l
i=0

To this value the ground absorption and atmospheric absorption
must be added.

Presently ground losses are handled simply. The number of
ground reflections n 1is counted and multiplied by a loss coefficient,
L , provided by the 3ser. It is intended to revise this by using
a closed form where the impedance of the ground will be specified
and phase information will be retained.

The atmospheric absorption coefficient is calculated using
the American National Standard. The necessary equations are
included here for easy reference. The absorption coeffeicient is

2 -11 1/2
Alpha = £ (1.84 X 10 (T/To)
=5/2 ~2
+ (T/To) (1.278 X 10 (exp(-2239.2/T))
JGE 4 (E/E ) + 1.068 X 10 (exp(-3352/T))
r,0 r,0

2
/(£ + (£ /€ N)))) (74)

r,N T,
in Nepers per meter. In this equation T is the temperature in
degrees Kelvin and TO is the ambient temperature equal to 293.15 K;

. i e o
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f is the frequency of the source in Hertz and f and f N are
r r
the relaxation frequencies in Hertz, for oxygen and uitroﬁen
respectively , and are given by
4

£ 0" (24 + 4,41 X 10 h X ((0.05 + h)/(0.391 + h)))

r,
and (75)

-1/2 -1/3
f = (T/T ) (9 + 350h exp (~6.142((T/T ) -1)))
r,N 0 0

In all of these equations the pressure {s considered equal to the
ambient pressure and so doesn’t eanter into the calculatioms. For
the model the average value of temperature is used for T.
The variable h is the per cent humidity and can be calculated as
h=h(p /p ) (76)
r sat so

where h is the relative humidity and the ratfo of saturation
r
pressure to ambient pressure can be calculated from

1 / = 10.79586 (1 - (T /T
oslo(psat pso) ( ( 01/ ))

- 5.02808 log (T/T )
g10 0

-4 =8.29692((T/T_ )-1)
+ 1.50474 X 10 X (1 -10 01 )

-3 4.76955(1=-(T_/T))
+ 0.42873 X 10 (-1 + 10 o1 )
- 2.2195983 (77)

where T = 273.16 is the triple point isotherm temperature.
The total loss is then given by

n
x 8in © sin © DX -
TL = 10 log 0 n+l Z 1 (78)
P4
cos © sin © sin @
0 i i+l
i=0

+ Alpha (x) +n L

We now have the basis for an eigenray routine. Appendix A
contains such a model. To graph the efgenrays, the output of the
program in Appendix A 1s input into the program in Appendix B.




4=
1. Eigenray routine improvements

Since the present model is for a horizontally homogeneous
medium it can be surmized that after ground reflections and
rays reach the {nitial height and angle the rays will follow
the same pattern. Advantage is taken of this cyclic nature to
speed up the calculation process. It is necessary to calculate
only one cycle and compare the horizontal length of the cycle to
the range.

Two types of intersection with the receiver are possible
within one cycle; 1) as the ray is upward bound and 2) as the ray
goes downward. A range of initial angles is swept through and
rays coming near the receiver location are stored.

The rays then enter a ray convergence routine. The horizontal
distance between where a ray intersects the receiver height and
the receiver range is given by

€ = x - Range (79)
A new ray is traced with the starting angle

® =9 -c/(3x/¥® ) (80)
0 0 0

where ax/aao is given by equation (72). This process will, under
favorable conditions, reduce the value of ¢ , and is repeated until

€ 1s smaller than a specified tolerance.

B. Some examples

The present models may be used to analyze a multitude of
gituations. Only a few can be discussed here.

First to be considered is a raised maximum phase velocity.
It was shown in section II-C-7 that this would cause a shadow
zone. The question discussed here is how intense must that
maximum be to show a noticeable effect and also, what happens

nearer the ground, below the maximum, since rays will be bent
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downward. In figure 8, there is an iso-velocity situation
near the ground, and the velocity is maximum there. 1In the
upper portion rays are bent upward, as would be expected,
toward the lower velocity. The rays contained in the
iso-velocity layer are straight and easily penetrate into
the upper layer. Figure 9 shows a slight inversion in the
lower level. The same rays are plotted here and the plot
shows that the rays don’t penetrate to the upper layer
quite as easily as before. Rays are bent downward and
trapped by the inversion. Figure 10 shows a more intense
inversion. The rays are bent as before but to the right
of the plot are more concentrated in the lower part.
Figure 11 shows this concentration more clearly. More
rays have been added between the rays in the lower

portion of figure 10. It is noted in this figure

that the upper section is much more concentrated than

the lower, indicating a much higher intensity of sound.
This point may be considered part of a caustic. It is
easily seen from this set of figures that the more

intense an inversion, the more rays may be trapped

below. This would indicate that the sound intensity
might likely be much higher in this region.

The ray tracing program may be used with a variable
terrain as seen in figure l2. The eigenray routine is
not yet capable of this. The problem is that the
techniques us.c to speed up the computation time take
advantage of the cyclic nature of rays which exists
only if there are similar conditions over the entire
terrain. Further {nvestigation is necessary to allow
for the ability to handle variable topography and
maintain optimal use.

Table ! shows the output of the eigenray routine

for an inversion condition. This is a list of the rays

. A AR AR NN -
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TABLE OF EIGENRAYS

TRAVEL  START GROUND ATTN SPREADING TQTAL
TIME ANGLE REFLECTIONS LOSS LOSS LOSsS
(SEC) (DEG) NO. ANGLE (DB) (DB) (DB)

0.0 5.117 2  9.120 5.38 68.19 73.57

0.0000 -5.117 2 9.120 5.38 68.19 73.57

0.0058 4.327 3 8.704 5.39 58.73 64.11

0.0058 =4.327 3 8.704 5.39 58.73 64.11

0.0074 2.807 4 8.061 5.38 58.55 63.93

0.0074 -2.807 4 8.06L 5.38 58.55 63.93

0.0083 ~-1.996 5 7.817 5,38 57.72 63.10

0.0083 1,996 5 7.8%7 5.38 57.712 63.10

0.0090 1.406 6 7.688 5.38 56.50 61.89

0.0090 -1.406 6 7.688 5.38  56.50 61.89

0.0097 -0.916 7 7.614 5.38 54.42 59.80

0.0097 0.916 7 7.614 5.38 54.42 59.80

0.0102 0.391 8 7.569 5.38 48.52 53.90

0.0102 -0.391 8 7.569 5.38 48.52 53.90

0.0825 5.143 1 9.135 5.38  67.81 73.20

0.0940 4.520 2 8.80t 5.39  59.12 64.51

0.1228 -0.585 8 7.582 5.38 50.26 55.64

0.1231 2.978 3 8.122 5.38 58.99 64.37

0.1463 2.171 4 7.863 5.38 58.35 63.73

0.1696 1.592 5 7.724 5.38 57.46 62.84

0.1952 1.135 6 T7.644 5.38 56.15 61.53

0.2277 0.728 7  7.59% 5.38 53.86 59.24

0.2370 -1.181 7 7.651 5.38  55.07 60.45

0.2835 0.266 8 7.564 5.38  47.29 52.67

0.3557 -1.800 6 7.770 5.38  56.91 62.29

0.5127 -2.620 5 7.998 5.38 58.01 63.40

0.7611 =4.117 4 8.602 5.39 58.25 63.63

1.2006 -5.095 J 9.108 5.39 68.62 74.00

Table 1 - List of eigenrays
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that intersect the same receiver point specified as
nine-hundred and fifteen meters. Figure 13 is a plot

of a number of these rays (from the ray tracing program)
and shows that in fact, they do intersect at the
specified receiver location.
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IV. Summary

The purpose of this paper has been to discuss ray-tracing
techniques. The equations have been derived from basic
principles in a straight foward manner. Ray~tracing may be
used in noise control applications as well as sound ranging.
Ray solutions are good approximations to wave solutions
under the condition that the veloci{ty gradient doesn’t
change very much over a wavelength.

An analysis of the ray solution has been performed.
Caustics are formed when rays are either bent toward each
other or wavefronts have a concave profile. Linear theory
predicts that there is infinite emergy at a caustic. This
is not so in reality due to non-linear effects. Caution
must be taken when reviewing output from a ray analysis.
Although the theory may predict ianfinite energy at a
caustic, experiments show that the amount of energy may
be very large, but not infinite.

Shadow zones occur when there exists an effective
maximum sound velocity at some height. WYaveguides
occur when there 1s a raised minimum sound velocity.

In anisotropic media rays are not orthogonal to
wavefronts. For the present models only isotropic
media are considered. An understanding of how rays
travel in anisotropic media {s enlightening to real
situations.

Computer programs have been developed to demonstrate
ray techniques and are contained in the appendices of this
paper. Thege programs have been used to show some examples.

The programs are presently being utilized in much
research at the Moise Control Lab of The Pennsylavnia
State University. They are being constantly revised

for various uses.
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Appendix A

RAY PATH CALCULATION - MAIN PROGRAM
COMMON /SX/DEP(100),VEL(100),GRAD(99),TEMP(100),WV(100)
COMMON /R/TT(99),DB(99),ATN(99),ANGO(99),ANGS(99) ,ANGB(99)
COMMON /R/NS(99),NB(99)

COMMON /P/TLOSS(99)

INTEGER TITLE

DIMENSION TITLE(10),BL(10)

READ(5,301,END=6) TITLE

READ(5,302) NDFT,NVFT,NTF,NWV,NRFT,IVEL,ITEMP,IWV, IRHM

IF ((IVEL+ITEMP).EQ.0) STOP

C IF SVP DATA IS 9 BE INTERNALLY GENERATED, REPLACE ‘STOP’ BY
C APPROPRIATE GO TO’ TO GENERATING ROUTINE.

10

15

20

22
23

21

27
26

29
28

24

WRITE(6,305) TITLE

NP=0

NP=NP+1
READ(S5,303)DEP(NP),TEMP(NP) ,VEL(NP) ,WV(NP),NOMO
IF (NOMO.EQ.0) GO TO 10

CALL SSP(NP,NDFT,NVFT,NTF,NWV,IVEL,ITEMP,IWV)
READ(S5,400) NBL,POR,(BL(1),I=1,NBL)
READ(5,304) TWIN

READ(5,304) sSD,TD,RANGE,ANGMAX,ANGMIN,FREQ,RHM
IF DEPTH IN FEET

IF(NDFT.EQ.1) GO TO 61

CONVERT TO FEET

SD=SD*3.28

TD=TD*3,28

IF (RANGE.EQ.0) GO TO 5

IS RANGE IN FEET

IF(NRFT.EQ.l) GO TO 22

CONVERT METERS TO KILOYARDS
RANGE=RANGE*1.09333/1000.

GO TO 23

CONVERT FEET TO KYARDS
RANGE=RANGE/3000.

IF(IRHM.EQ.1) GO TO 21

DEFAULT VALUE OF RELATIVE HUMIDITY
RHM'SO .

IF(ITEMP.EQ.0) GO TO 24

FIND AVERAGE TEMPERATURE IN DEGREES C
AVTP=0.0

IF(NTF.EQ.0) GO TO 26

DO 27 I=1,NP
AVTP=(TEMP(I)=32.)%5./9.4+AVTP

GO TO 28

DO 29 I=],NP

AVTP=TEMP(IL)+AVTP

AVTP=AVTP/NP

GO TO 31
DEFAULT AVERAGE TEMP 20 DEGREES C
AVTP-ZOOO
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31

25

55
56

30

1

45
71

6
400
450
301
302
303
304
305
353

WS- E W -

354
1
2
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CALL RAY(NP,SD,TD,RANGE,ANGMAX,ANGMIN,FREQ,NRAY,RHM,AVTP)
IF(NRAY.EQ.0) GO TO 71
CALL TTORD(NRAY)
TO=TT(1)
DO 25 I=1,NRAY
TT(I)=TT(Ll)-TO
SS=20.*ALOGLO(IE3*RANGE)
IF OUTPUT IN MKS OR BES
IF(NVFT.EQ.l) GO TO 55
CONVERT TO MKS
SD=SD*,304878
TD=TD*,304878
RANGE=RANGE*.9146341
WRITE(6,356) TITLE,SD,TD,RANGE,FREQ,ANGMAX,ANGMIN,SS,TO
GO TO 56
WRITE(6,353) TITLE,SD,TD,RANGE,FREQ,ANGMAX,ANGMIN,SS,TO
DO 45 K=1,NBL
DO 30 I=1,NRAY
TLOSS(I)=DB(I)
IF (NB(I).EQ.Q0) GO TO 30
XNB=NB(I)
TLOSS(I)=DB(I)+XNB*BLOS(FREQ,POR,ANGB(I))+XNB*BL(K)+ATN(L)
CONTINUE
WRITE(uv,450) BL(K)
WRITE(6,354)
WRITE(6,355) (TT(I),ANGO(I),NB(I),ANGB(L),
ATN(L),DB(I),TLOSS(I),I=1,NRAY)
CALL INTOUT(NRAY,TWIN,XIOM) l
CONTINUE
IF(NRAY.EQ.0) WRITE(6,358)
STOP
FORMAT(I1,4X,11F5.1) !
FORMAT(15H BOTTOM LOSS = ,F5.1,//)
FORMAT(1044) ‘
FORMAT(911)
FORMAT(4F10.4,1X,1I1)
FORMAT(7F10.3)
FORMAT(1HL,10A4//) i
FORMAT(1HI,104a4//
1H ,12HSOURCE DEPTH,F8.3,3H FT/
lH ,12HTARGET DEPTH,F8.3,3H FT/
IH ,S5HRANGE,F8.3,5H KYDS//
14 ,4HFREQ,F7.3,4H KHZ/
IH ,9HMAX ANGLE,F6.1,4H DEG/
1H ,9HMIN ANGLE,F6.1,4H DEG//
14 ,12HSPH SPP LOSS,F7.2,3H DB/
lH ,16H1ST ARRIVAL TIME,F8.3,5H SECS//)
FORMAT(///,16X,18HTABLE OF EIGENRAYS//
14 ,20HTRAVEL START .
3ISHGROUND ATTN SPREADING TOTAL/
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c
C
C
c
c
c
C
C
c
C
C
c
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3 1H ,18H TIME ANGLE .
4 36HREFLECTIONS LOSS LOSS LOSS/
5 1H ,19H (SEC) (DEG) ’
6 35HNO. ANGLE (DB) (DB) (DB)//)

355
356

358

PRO

MAX

FORMAT(lH ,F6.4,F9.3,2X,14,F8.3,2F8.2,F10.2/)
FORMAT(LH1,10A4//
1H ,12HSOURCE DEPTH,F8.3,3H M /
14 ,12HTARGET DEPTH,F8.3,3H M /
I1H ,SHRANGE,F8.3,5H KM //
I1H ,4HFREQ,F7.3,4H KHZ/
1H ,9HMAX ANGLE,F6.l1,4H DEG/
1H ,9HMIN ANGLE,F6.1,4H DEG//
14 ,12HSPH SPP LOSS,F7.2,3H DB/
IH ,16H1ST ARRIVAL TIME,F8.3,5H SECS//)
FORMAT(10X, ‘NO RAYS FOUND’)
END
SUBROUTINE RAY(NP,SD,TD,RANGE,ANGMAX,ANGMIN,FREQ,NRAY,RHM,AVTP)
GRAM FINDS EIGENRAYS AND CALCULATES TRANSMISSION LOSS
NP = NUMBER OF POINTS IN SOUND SPEED PROFILE
SD = SOURCE DEPTH (FT)
TD = TARGET DEPTH
RANGE = SOURCE- TARGET HORIZONTAL RANGE (KYDS)
ANGMAX = MAX ANGLE SEARCHED (DEG)
ANGMIN = MINUMUN ANGLE SEARCHED
NRAY = NUMBER OF EIGENRAYS FOUND
RHM = RELATIVE HUMIDITY N PER CENT
AVTP = AVERAGE TEMPERATURE N DEGREES CELSIUS
AUX PRINT-OUT: SW7 ON - RAY SEARCH INFO
SW8 ON ~ DF-BUG
COMMON /SX/D1(100),V1(100),G1(99),T11(100),WV(100)
COMMON /R/TT(99),DB(99),ATN(99),ANO(99),ANS(99),ANB(99)
COMMON /R/LS(99),LB(99)
DIMENSION D(102),V(102),G(101)
DIMENSIONDD(2),ND(2)
DOUBLE PRECISION PID,VKD,CVD,THOD,SITHD,CSTHD,SITH2D,CSTH2D
DOUBLE PRECISION XD,DXD,XTD,RYARDD,SUMD,DSUMD
IPDB=2
IPRINT=2
PID=3.14159265358979D0
PI=SNGL(PID)
NUMBER OF RAYS (SIZE OF /R/ ARRAYS)
NRAYMX=99
CALCULATE ATTN COEFF BY AMERICAN NATIONAL STANDARD
CHANGE TO DEGREES KELVIN
AVTP=AVTP+273.15
CHANGE TO HZ
FTT=FREQ*1000.
T0=293.15
TOl=273.16

OO N W& WA -

PLR=10.79586*(1.=(TOLl/AVTP))~5.02808*ALOGIO(AVTP/TOL)+1.50474%]Q %
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10

11

12

15
20

21
26

22

23
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L*(=4,)%(L~10.%*%(~8,29692*%((AVTP/TOL)=1.)))+0.42873%10,%k(=3,)*(~]
1e+10.%%(4.76955%(1.~-(TOL/AVTP))))=2.2195983
HM=RHM*10.**PLR
FRO®24,+4,41%]10. . **4*IM*(0.05+1UM)/(0.391+HM)
FRN=(TO/AVTP)** ,5%(9,+350. *HM*EXP(=6.142% ((AVTP/TO)**(~=1./3.)=1.))
1)

ALPHA IN NEPERS/METER
ALPHA=FTT**2%(1.84*%10.%*(=11)*(AVTP/TO)** ,5+(AVTP/TO)**(=5,/2.)*(1
1.278%10,%%(<~2)*EXP(-2239.1/AVTP)/(FRO+FTT*FTT/FRO)+.1068*EXP(~-3352
1./AVTP)/ (FRN+FTT*FTT/FRN)))

CONVERT TO DB/KYD
ALPHA=ALPHA*868.589%3.,048037*3.

SOURCE AND TARGET INTO SVP

DO 5 J=1,NP

D(J)=Di(J)

V(J)=V1(J)

1F(J.EQ.NP) GO TO 6

G(J)=Gl(J)

LP=NP

I=1

IF (SD-TD) 10,11,12

DD(1)=SD

DD(2)=TD

J=1

GO TO 15

DD(2)=SD

Je2

GO TO 15

DD(1)=TD

DD(2)=SD

J=1

IF (DD(J)-D(I1)) 20,23,24

LP=LP+1

IP=LP-1

DO 21 K=1,IP

L=LP-K

M=L+1

D(M)=D(L)

V(M)=V(L)

IF(L.EQ.1l) GO TO 26

M=L=-1

G(L)=G(M)

D(I)=DD(J)

M=l-1

V(I)=V(M)+G(M)*(D(I)=D(M))

ND(J)=I

I (J.GE.2) GO TO 35

J=2

GO TO 15

ND(J)=I
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GO TO 22
24 IF (I.GE.LP) GO TO 30
Isl+l
GO TO 15
30 ND(J)=LP
35 IF (SD~-TD) 40,41,42
4C NSD=ND(1)
NTD=ND(2)
GO TO 60
41 NSD=ND(2)
NTD=NSD
GO TO 60
42 NTD=ND(1)
NSD=ND(2)

C INITIALIZE RAY TRACE

60 ANGO=ANGMAX
RYARD=1E3*RANGE
RYARDD=DBLE(RYARD)
ERRMX=1.

STEP=0.05
NSTEP=0
IRAY=0
JRAY=0
NRAY=0
IJ=0
IPRINT=1 IF SS7 ON: 1IPRINT=2 1IF SS7 OFF
IF (IPRINT.EQ.2) GO TO 65

WRITE(6,802) SD,TD,RANGE,ANGMAX,ANGMIN,FREQ,ALPHA

WRITE(6,801)
IP=LP-1
WRITE(6,800) (1,D(I1),v(I),G(I),I=1,IP)
WRITE(6,800) LP,D(LP),V(LP)
WRITE(6,950)
START NEW RAY
65 K=NSD
CHECK IF INITIAL RAY AT HIGHEST LIMIT
IF (K.GT.l) GO TO 70
DOES INITIAL ‘LIMIT® RAY GO DOWNWARD ?
1F (ANGO.GT.0.) GO TO 205
IF ((ANGO.EQ.0.).AND,.(G(l).GE.O0.)) GO TO 205
CHECK 1F INITIAL RAY ON GROUND
70 IF (K.LT.LP) GO TO 75
DOES INITIAL GROUND RAY GO UPWARD ?
IF (ANGO.LT.0.) GO TO 210
IF ((ANGO.EQ.0.).AND,.(G(LP~1),LE.O.)) GO TO 210
IS INITIAL ANGLE ZERO ?
75 IF(ABS(ANGO).GT.1lE-3) GO TO 90
IF INITIAL RAY IS SPLIT, ARBITRARILY MAKE DOWNARD
IF INITIAL RAY IS DOWNARD , DECREASE ANGO SLIGHTLY
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C IF INITIAL RAY IS UPWARD , INCREASE ANGO SLIGHTLY

C MAKE SPECIAL CALCULATION IF RAY IS HORIZONTAL

80

85

GO TOo 220
ANGO=ANGO0-0.01
GO TO 90
ANGO=ANGO+0.01

C INITIALIZE ANGO, ETC

90

THO=PI/180.*ANGO
THOD=DBLE(THO)
CSTHD=DCQS(THOD)
CSTH=SNGL(CSTHD)
CVD=DBLE(V(NSD))/CSTHD
CV=SNGL(CVD)
SITH=SIN(THO)
SITHO=SITH

X=0.0

X1=0.0

X2=0.0

KV1=0

KV2=0

IBUG= 90; IF(IPDB.EQ.1) WRITE(6,888) IBUG,ANGO,SITH,CSTH,CV

C CALCULATE OMNE LAYER

100

105

IBUG=100; IF(IPDB.EQ.l) WRITE(6,888) IBUG,V(K),SITH,SITH2,X,X1,X2
IF (SITH.LT.0.) GO TO 110
IF RAY GOES UPWARD BEYOND LIMIT
IF(XK.LE.1) GO TO 205
K=K=1
DIR=1.
GRAD=G(K)
GO TO 120

C DOWNARD=-GOING RAY

110

IF (K.LT.LP) GO TO 115

C REFLECTION OFF GROUND

115

SITH2==-SITH2

IF (KV1.NE.O) KV2=LP ; IF (KV1.EQ.0) KVi=LP
GO TO 140

GRAD=G(K)

K=K+1

DIR=-}

C DISTANCE CALCULATION; K = NEXT LAYER
C ISO-VELOCITY ?

120

IF (GRAD.EQ.0.) GO TO 125
VKD=DBLE(V(K))
I1BUG=120; IF(IPDB.EQ.l) WRITE(6,888) IBUG,V(K),CV

C VERTEX IN LAYER K ?

IF (VKD.GT.CVD) GO TO 130
IF (VKD.EQ.CVD) GO TO 205
CSTH2=SNGL(VKD/CVD)
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SITH2=DIR*SQRT((1.-CSTH2)*(1l.+CSTH2))
DX=CV/GRAD*(SITH2~SITH)
GO TO 135

ISO-VELOCITY CALCULATION

125 ID=DIR
LAST=K+ID
SITH2=SITH
CSTH2=CSTH
DX=(D(LAST)=D(K))*CSTH2/SITH2
GO TO 135

VERTEX CALCULATION

130 ID=DIR
K=K+1D
IF (KV1.NE.Q) KV2=K ; IF (KV1.EQ.0) KVi=K
SITH2==SITH
CSTH2=CSTH
DX=2,.*CV/GRAD*SITH2

135 X=X+DX/3

CHECK RAY POSITION

RAY AT TARGET DEPTH ?

IF (K.NE.NTD) GO TO 140
IF (X1.6T.0.) X2=X
IF (XI.EQ.O.) Xi=X .

RAY RETURNED TO SOURCE DEPTH ?

140 1BUG=140; IF(IPDB.EQ.l) WRITE(6,888) IBUG,V(K),SITH,SITH2,X,X1,X2
IF ((K.EQ.NSD).AND.(SITHO*SITH2.GT.0.)) GO TO 145
IF((X.GT.(l.5*RYARD)) .,AND.(X1.EQ.0.)) GO TO 205
SITH=SITH2
CSTH=CSTH2
GO TO 100

CYCLE COMPLETED

145 WL=X

CHECK 13T INTERSECTION
IF (X1.EQ.0.) GO TO 205
NCYC=0
ERRA=X1~-RYARD

150 ERRB=ERRA+WL

MINIMUM ERROR NCYC ?

IF (ABS(ERRB).GE.ABS(ERRA)) GO TO 155

ERRA=ERRB

NCYC=NCYC+1

IF (NCYC.LT.50) GO TO 150

KIND=1

IF (IPRINT.EQ.l) WRITE(6,902) ANGO,KV],KV2,NCYC,KIND
GO TO 205

1ST RAY ?

155 IF (IRAY.EQ.0) GO TO 160

THIS RAY SAME AS LAST ?

IF ((NCYC-EQ.ICYC)oAND.(KVl.EQ.IVI).AND.(KVZ;EQ.IVZ)) GO TO 170

IF NEW RAY, CALCULATE INTENSITY FOR LAST RAY

LadRRRDL L SR S R
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160

165

170
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GO TO 280
IRAY=IRAY+]
ICYCaNCYC
IVis=KVi

Iv2=KV2
ERRIY=RYARD*1E6Q
ERRIZ=ERRIY
ANGI=ANGO
ERRI=ERRA

GO TO 175
ERRIX=ERRIY
ERRIY=ERRIZ
ERRIZ=ABS(ERRA)

RANGE ERROR PASS A MAX ?

IF ((ERRIX.LT.ERRIY).AND.(ERRIZ.LT.ERRIY)) GO TO 280

THIS RAY CLOSER TO TARGET THAN LAST ?

IF (ABS(ERRA).LT.ABS(ERRI)) GO TO 165

CHECK 2ND INTERSECTION

175

180

185

190

195

200

IF (X2.EQ.0.) GO TO 205

NCYC=0

ERRA=X2-RYARD

ERRB=ERRA+WL

IF (ABS(ERRB).GE.ABS(ERRA)) GO TO 185
ERRA=ERRB

NCYC=NCYC+1

IF (NCYC.LT.50) GO TO 180

KIND=2

IF (IPRINT.EQ.l) WRITE(5,902) ANGO,KV1,KV2,NCYC,KIND
GO TO 205

IF(JRAY.EQ.0) GO TO 190

IF ((NCYC.EQ.JCYC).AND.(XV1.EQ.JV1).,AND,(KV2.EQ.JV2)) GO TO 200

GO TO 285

JRAY=JRAY+1

JCYC=NCYC

JVi=KvVi

JV2=KV2

ERRIJY=RYARD*1E60

ERRJZ=ERRJY

ANGJ=ANGO

ERRJIJ=ERRA

GO TO 205

ERRJX=ERRJY

ERRJY=ERRJZ

ERRJZ=ABS(ERRA) :
IF ((ERRJX.LT.ERRJY).AND.(ERRJZ.LT.ERRJY)) GO TO 285
IF (ABS(ERRA).LT.ABS(ERRJ)) GO TO 195

DECREMENT ANGO

205

NSTEP=NSTEP+1
STEPN=FLOAT(NSTEP)

ANGO=ANGMAX~-STEPN*STEP
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C DECREMENTED THRU THE RANGE ?

IF (ANGO.GE.ANGMIN) GO TO 65

C CONVERGE LAST I AND J RAYS
210 IJ=1

C

IF NO RAYS FOUND

IF((IRAY+IJRAY+NRAY).EQ.0) RETURN

GO TO 280

C HORIZONTAL RAY CALCULATION
220 LF (NSD.NE.NTD) GO TO 205

C ZERO IN ON TARGET AND CALCULATE INTENSITY LOSS

ERR=0.

S=RANGE
TIM=3,.*RYARD/V(K)
SPL»20.*ALOGIO(RYARD)
ATTN=ALPHA*S

NS=0

NB=Q

LCYC=0

KIND=0

LV1=K

Lv2=K

e = e

WRITE(6,951) ANGO,ERR,NS,NB,S,TIM,SPL,ATTN,LV],LV2 ,LCYC,KIND

GO TO 205

280 KIND=1}

285

290

295

ANGL=ANGI
LCYC=ICYC
ERRL=ERRI
LVI=IV!
LV2=1IV2

GO TO 290
KIND=2
ANGL=ANGJ
LCYC=JCYC
ERRL=ERRJ
LV1=Jvl
LV2=JV2

IF (1J.EQ.1) IJ=2
THOD=PID*DBLE(ANGL)/180D0
THO=SNGL(THOD)
ERRP=2.*ERRL
IVTX=0

NS=0

NB=0

INT=0

MV1=0

MV2=0

ANGB=0.0
ANGS=0.0

X=0.0

XT=0.0

i a3 PPN REIRAY G T
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305

310

315

320

325
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S-0.0

TIM=0.0

SUM=0.0

XD=0DO

XTD=0DO

SUMD=0QDO

SITHD=DSIN(THOD)
CSTHD=DCOS(THOD)
CVD=DBLE(V(NSD))/CSTHD
CV=SNGL(CVD)
SITHO=SNGL(SITHD)
CSTHO=SNGL(CSTHD)
TNTHO=SITHO/CSTHO
ANGLO=130./PIL*THO

TH=THO

SITH=SITHO

CSTH=CSTHO

K=NSD

IF (SITH.LT.0.) GO TO 310
IF (K.LE.l1) GO TO 205
K=K=~1

DIR=1,

GRAD=G(K)

GO TO 320

IF (K.LT.LP) GO TO 315
NB=1

IF (MV1.NE.O) MV2=LP ; IF (MV1.EQ.0) MVi=sLP
$2=SITH*SITH
ANGB=180./PI*ATAN(SQRT(S2/(1.~52)))
SITH2D==SITH2D
SITH2==SITH2

TH2==TH2

GO TO 355

GRAD=G(K)

K=K+1

DIR=~1.

IF (GRAD.EQ.0.) GO TO 335
VKD=DBLE(V(K))

IF (VKD.GT.CVD) GO TO 340
I1F (VKD.EQ.CVD) GO TO 379
CSTH2D=VKD/CVD
SITH2D=DBLE(DIR)/CVD*DSQRT((CVD~VKD)*(CVD+VKD))
CSTH2=SNGL(CSTH2D)
SITH2=SNGL(SITH2D)
TH2=ATAN(SITH2/GCSTH2)
DXD=CVD*(SITH2D-SITHD)/DBLE(GRAD)
DX=SNGL(DXD)
DS=CV/GRAD*(TH2-TH)

ARG=SNGL((1DO+SITH2D)/(1DO~-SITH2D)*(1D0O~-SITHD)/(1DO+SITHD))

DTIM=0.5/GRAD*ALOG(ARG)




330

335

340

345

355

360
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DSUMD=DXD/SITH2D/SITHD
XD=XD+DXD/3DO
X=SNGL(XD)

S=S+DS/3.

TIM=TIM+DTIM
SUMD=SUMD+DSUMD/3D0
SUM=SNGL{SUMD)

GO TO 345

ID=DIR

LAST=K+1D

TH2=TH

SITH2=SITH

CSTH2=CSTH
SITH2D=SITHD
CSTH2D=CSTHD
H=D(LAST)-D(K)
DXD=DBLE(H)*CSTH2D/SITH2D
DX=SNGL(DXD)
DS=SQRT(DX*DX+H*H)
DTIM=DS/V(K)

GO TO 330

ID=DIR

K=K+ID

TH2==TH

SITH2=-SITH

CSTH2=CSTH
SITH2D==SITHD
CSTH2D=CSTHD

IF (MV1.NE.O) MV2eK ; IF (MV1.EQ.0) MV1=K
GO TO 325

IF (K.NE.NTD) GO TO 355
INT=INT+!

IF (INT.NE.KIND) GO TO 355
XTD=XD

XT=SNGL(XTD)

ST=$§

TIMT=TIM

SUMT=SUM

NST=NS

NBT=NB

IF ((K.EQ.NSD).AND.(THO*TH2.GT.0.)) GO TO 360

IF (((X+GT.(1l.S*RYARD)).AND.(INT.EQ.0)).OR.(INT.GT.2)) GO TO 375

TH=TH2

SITH=SITH2
CSTH=CSTH2
SITHD=SITH2D
CSTHD=CSTH2D

GO TO 300
CYCL=FLOAT(LCYC)
XD=XTD+XD*DBLE(CYCL)
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370
375
377

378

379
380
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X=SNGL(XD)

ERR=SNGL (XD-RYARDD)

IF ((MV1.NE.LV]1).0R.(MV2.NE.LV2)) GO TO 378

IF (ABS(ERR).GE.ABS(ERRP)) GO TO 370
SUM=SUMT+CYCL*SUM

IF (ABS(ERR).LE.ERRMX) GO TO 365

DXDTH=-SUM*#TNTHO

DTHO=ERR/DXDTH

DANGO=180./PI*DTHO

IF (ABS(DANGO).GT.(LO.*STEP)) GO TO 1377
THOD=THOD-DBLE(DTHO)

THO=SNGL(THOD)

ERRP=ERR

GO TO 295

S=ST+CYCL*S

TIM=TIM+CYCL*TIM
SPL=10.*ALOGIO(ABS(X*SITH2*TNTHO*SUM/CSTHO))
NS=NST+LCYC*NS

NB=NBT+LCYC*NB

S=1E-3*5

ATTN=ALPHA*S

IF (IPRINT.EQ.l) WRITE(6,951)
1 ANGLO,ERR,NS,NB,S,TIM,SPL,ATTN,LV1,LV2,LCYC,KIND
NRAY=NRAY+]

TT(NRAY)=TIM

DB{NRAY)=SPL

ATN(NRAY)=ATTN

ANO(NRAY)=ANGLO

ANS(NRAY)=ANGS

ANB(NRAY)=ANGB

LS(NRAY)=NS

LB(NRAY)=NB

IF (NRAY.LT.NRAYMX) GO TO 380

WRITE(6,805)

RETURN

IF (IPRINT.EQ.l) WRITE(6,952) ANGL,ANGLO,LV1,LV2,LCYC,KIND
GO To 1380

IF (IPRINT.EQ.l) WRITE(6,953) ANGL,ANGLO,LV1,LV2,LCYC,KIND
GO TOo 380

IF ( IPRINT.EQ.l) WRITE(6,954) ANGL,DANGO,LV1,LV2,LCYC,KIND
GO TO 1380

IF (IVIX.GE.3) GO TO 379

IVIX=IVTX+1

DTHO=DTHO/2.

THOD=THOD+DBLE(DTHO)

THO=SNGL(THOD)

GO TO 295

IF (IPRINT.EQ.l) WRITE(6,955) ANGL,ANGLO,LV1,LV2,LCYC,KIND
IF ((1J.EQ.1).AND.(JRAY.GT.0)) GO TO 285

IF ((IJ.EQ.2) OR.((IJ.EQ.1).AND.(JRAY.EQ.0))) RETURN
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IF (KIND.EQ.l) GO TO 160

GO TO 190
FORMAT(1H
FORMAT(1H

800
801
802
1H
IH
14
1§
IH
lH

VS WN -

»12,2F10.2,F12.3)
»3ZHSVP WITH SOURCE AND TARGET ADDED//)

FORMAT(1H!,12HSOURCE DEPTH,F8.1,3H FT/

o, LZHTARGET DEPTH,F8.1,3H FT/

» SHRANGE ,F8.3,5H KYDS//

,9HMAX ANGLE,F6.1,4H DEG/

,9HMIN ANGLE,F6.1,4H DEG//

, IHFREQUENCY,F7.3,4H KHZ/

, LIOHATTN COEFF,1PE10.2,7H DB/KYD////)

805 FORMAT(1HO,48H*** FOUND TOO MANY RAYS - DECREASE ANGMAX,ANGMIN)

902 FORMAT(LH

,F7.3,214 CYCLE LIMIT EXCEEDED,32X,I5,17,17,16//)

950 FORMAT(1H1,17X,37HTABLE OF SOUND RAY PATH INTERSECTIONS//

1H

1H

14

AUV SWN

951
952
953
954

FORMAT(1H
FORMAT(1H
FORMAT(1H
FORMAT(1H

»J7HINITIAL RANGE NUMBER OF RAY

»
44HTRAVEL SPREADING ATTN IST 2ND NUMBER/
,3J8HANGLE ERROR REFLECTIONS LENGTH
4THTIME LOSS LOSS VERTEX VERTEX OF RAY/
»37H (DEG) (YDS) SURFACE BOTTOM (K¥YDS) .
49H(SECS) (DB) (DB) LAYER LAYER CYCLES TYPE//)

,F7.3,F6.1,16,1?,F9.2 ,F8,.3,F8.2,F9.3,15,17,17,16//)
,F7.3,16H RAY DIVERGED AT,F9.3,4H DEG,24X,15,17,17,16//)
»,F7.3,12H RAY LOST AT,F9.3,4H DEG,28X,15,17,17,16//)
»F7.3,15d ATTEMPTED JUMP,F9.3,4H DEG,25X,I5,17,17,16//)

e e —— e -

955
888

FORMAT(1H ,F7.3,154 DIFF VERTEX AT,F9.3,4H DEG,25X,15,17,17
FORMAT(1H0,18/10(1PE13.5))

END

FUNCTION BLOS(F,P,THETA)

C CALCULATES BOTTOM LOSS FROM NUWC TECH NOTE 10 (DEC 67).

c

15

20

30
35

F = FREQ (KHZ), P = POROSITY, THRTA = BOTTOM GRAZING ANGLE
DIMENSION ABTLOS(14)
DATA ABTLOS(1),ABTLOS(2),ABTLOS(3),ABTLOS(4),ABTLOS(S5),

1 ABTLOS(6),ABTLOS(7),ABTLOS(8),ABTLOS(9),ABTLOS(10),ABTLOS(

»16//7)

11),

2 ABTLOS(12),ABTLOS(13),ABTLOS(14) /.16,.67,1.,1.18,1,31,1.43,1.52,

3 1.61,1.7,1.76,1.82,1.88,1.94,2./
BLOS=0.0

IF(P.LT.0.01) RETURN

IF(F.GT.0.1) GO TO 15

FUNU=0.16

GO TO 40

IF(F.LT.6.5) GO TO 20

FUNU=2.0

GO TO 40

DO 30 I=1,7

XI=I

IF(XI*0.5.GT.F) GO TO 35

CONTINUE

IF(I.EQ.1) GO TO 65
FUNU=ABTLOS(I)+(ABTLOS(I+1)=ABTLOS(I))*(F=(XI=1.)%0.5)/0.5
GO TO 40
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45 FUNU=ABTLOS(l)+(ABTLOS(2)=-ABTLOS(1))*(F-0.1)/0.4

40 ARG=1.5/P*ALOG(P*THETA/13.74)
ARG=EXP( ARG)
BLOS=(3.7417.5*%(P-,27))*FUNU*(TANH(ARG)+(1.0-P/0.27)/12.5%
1 (THETA/90.0)*%2)
RETURN
END
SUBROUTINE INTOUT(NRAY,TWIN,XIOM)

C SUMS INTENSITY IN MOVING WINDOW TWIN SECONDS LONG.
COMMON /R/TT(99),DB(99),ATN(99),ANGO(99),ANGS(99),ANGB(99)
COMMON /R/NS(99),NB(99)

COMMON /P/TLOSS(99)
DIMENSION XINT(99)
XLN10=0.23025851
XIOM=-400.
WRITE(6,400) TWIN
DO 10 I=],NRAY
10 XINT(I)=EXP(~-XLNIO*TLOSS(I))
SUM=0.
Kl=1
K2=1l
15 IF(TT(K1)-TT(K2)+TWIN) 30,30,20
20 T2=TT(K2)
SUMsSUM+XINT(K2)
L2=K2
K2=K2+1
GO TO 40
30 T2=TT(K1)+TWIN
SUM=SUM=XINT(K1)
Ll=Kl
Kl=K1+1
IF((TT(L1)-TT(K2)+TWIN).EQ.0.) GO TO 20
40 RCV=10.*ALOGLIO(ABS(SUM+1E-30))
WRITE(6,401) T2,K!,L2,RCV
XI0OM=AMAX]1 (XIOM,RCV)
IF(K2.LE.NRAY) GO TO 15
WRITE(6,450) XIOM
450 FORMAT(1H ,24HMAX INTEGRATOR OUTPUT = ,F10.2,/////)
RETURN
400 FORMAT(///,2X,17HINTEGRATOR OUTPUT///
I 1H ,11HTIME WINDOW,F6.3,4H SEC//
2 14 ,23H TIME 1ST 2ND OUTPUT/
3 IH ,22H (SEC) RAY RAY (oB)//)
401 FORMAT(IH ,F6.4,14,14,F9.2)
END
SUBROUTINE TTORD(NRAY)

C ORDERS EIGENRAYS BY TRAVEL TINME
COMMON /R/TT(99),DB(99),ATN(99),ANG0(99),ANGS(99),ANGB(99)
COMMON /R/NS(99),NB(99)

IE=sNRAY-1
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DO 25 I=1,IE
JS=I+1]
DO 25 J=JS,NRAY
IF (TT(J).GE.TT(1)) GO TO 25
TEMP L=TT(L)
TEMP 2=DB(I)
TEMP 3=ATN(I)
TEMP 4=ANGO(I)
TEMP S5=ANGS(1)
TEMP 6=ANGB(I)
NTEMP 1=NS(I)
NTEMP 2=NB(1)
TT(I)=TT(J)
DB(I)=DB(J)
ATN(T)=ATN(J)
ANGO(I)=ANGO(J)
ANGS(I)=ANGS(J)
ANGB(I)=ANGB(J)
NS(I)=NS(J)
NB(I1)=NB(J)
TT(J)=TEMP1
DB(J)=TEMP2
ATN(J)=TEMP3
ANGO(J)=TEMP4
ANGS(J)=TEMPS
ANGB(J)=TEMUP6
NS(J)=NTEMPI
NB(J)=NTEMP2
25 CONTINUE
RETURN
END
SUBROUTINE SSP(NP ,NDFT ,NVFT ,NTF,NWV,IVEL,ITEMP,IWV)
CALCULATE SOUND SPEED PROFILE FROM BERANAK
D=DEPTH
G=SOUND SPEED GRADIENT
V=SQUND SPEED
T=TEMP
WVsWIND VELOCITY
COMMON/SX/D(100),v(100),G6(99),T(100),WV(100)
SOUND SPEED GIVEN ?
IF (IVEL.EQ.l) GO TO 50
TEMP IN DEG F ?
[F (NTF.NE.l) GO TO 10
CONVERT TEMP TO DEG C
DO 5 I=1,NP
S T(I)=5./9.*%(T(L)=-32.)
DEPTH IN FT ?
10 IF (NDFT.NE.1) GO TO 20
CONVERT DEPTH TO METERS
DO 15 I=],NP

B R e A R
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15 D(I)=D(I)*0.3048
C WIND VELOCITY GIVEN?
20 IFC(IWV.EQ.l) GO TO 27
C ASSUME NO WIND VELOCITY
DO 25 I=1,NP
25 WV(I1)=0.0
c WIND VELOCITY IN METERS/SEC?
27  IF(NWV.EQ.0) GO TO 30
¢ CONVERT TO METERS/SEC
DO 26 T=l,NP
26 WV (I)=WV(I)*.304878
C CALCULATE SOUND SPEED
30 DO 35 I=1,NP
35  V(I)=331.4*(SQRT(1.0+0.00366*T(I)))+WV(I)
C CALCULATE SOQUND SPEED GRADIENT
DO 40 I=2,NP
J=I~1
40 G(I)=(V(T1)~-v(J))/(u(L)~-0(J))
C IF VELOCITY INPUT IN MKS OUTPUT IN MKS
IF(NVFT.EQ.0) GO TO 45
46 DO 47 I=1,NP
V(I)=V(1)*3,28084
D(I)=D(1)*3,28084
WV(I)=WV(I)*3,.28084
a7  T(I1)=9./5.*T(I)+32.
IF(NVFT.EQ.0) RETURN
C PRINT PROFILE INCLUDING TEMP AND WV
WRITE(6,801)
IF=NP-1
WRITE(6,802) (I,D(I),V(I),T(L),WVv(I),G(1),I=1,IF)
WRITE(6,802) NP,D(NP),V(NP),T(NP),WV(NP)
RETURN
c MKS OUTPUT
45  WRITE(6,805)
IFaNP-]
WRITE(6,802) (I,D(I),V(I),T(I),WV(I),G(I),I=1,IF)
WRITE(6,802) NP,D(NP),V(NP),T(NP),WV(NP)
GO TO 46
C SOUND SPEED IN FPS ?
50 IF (NVFT.EQ.1) GO TO 60
c OUTPUT IN MKS UNITS
IF(NDFT) 53,70,53
53 DO S1 1=1,NP
51 D(I)=D(I)*.304878
NDFT=0
GO TO 70
C CONVERT SPEED TO FPS
52 DO 55 I=l,NP
55 V(I)=V(I)*3.28084
C DEPTH IN FT ?
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60 IF (NDFT.EQ.1) GO TO 70
C CONVERT TO FEET
DO 65 I=1,NP
65 D(L1)=D(1)*3.28084
IF(NVFT.EQ.0)RETURN
C CALCULATE SOUND SPEED GRADIENT
70 DO 75 I=2,NP
Jul-l
75 G(I)=(V(I1)=-V(I)})/(D(1)~D(J))
C PRINT PROFILE
c MKS OUTPUT OR BES
IF(NVFT.EQ.1) GO TO 80
WRITE(6,806)
IE=NP~1
WRITE(6,804) (I,D(I),V(1),G(I),I=1,IE)
WRITE(6,804) NP,D(NP),V(NP)
GO TO 52
80 WRITE(6,803)
[E=NP~1]
WRITE(6,804) (I,D(I),V(I),G6(I),I=1,1IE)
WRITE(6,804) NP,D(NP),V(NP)

RETURN
801 FORMAT(20X,19HSOUND SPEED PROFILE//
1 8X,41HDEPTH SPEED GRADIENT TEMP wv/
2 9X,4aH(FT) (FT/SEC) (FPS/FT) (DEG F) (FT/SECY//)

802 FORMAT(!H ,I12,1PE10.3,Q0PF10.3,11X,2F8.3/21X,1PEL11.3)
803 FORMAT(10X,I19HSOUND SPEED PROFILE//
1 8X,26HDEPTH SPEED GRADIENT/
2 9X,258(FT) (FT/SEC) {FPS/FT)//)
804 FORMAT(iH ,I2,0PE10.3,F10.3/21X,1PEL1.3)
805 FORMAT(20X,l9HSOUND SPEED PROFILE//

H 8X,41HDEPTH SPEED GRADIENT TEMP wv/
2 9%, 42H(M) (M/SEC) (M/s/M) (DEG C)Y (M/SEC)Y//)
806 FORMAT(LOX,l9HSOUND SPEED PROFILE//
1 8X,26HDEPTH SPEED GRADIENT/
2 9X,25H(M) (M/SEC) M/s/iMy 17)
END

T op 4 s WERPRATRRG LY
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Appendix B

SRP-PLOT 2 PROGRAM
(4/6/73)

COMPUTES SOUND RAY PATHS AND WRITES TAPE OR PUNCHES CARDS FOR
PLOTTING PATHS USING CALCOMP.

WILL TAKE UP TO 150 BOTTOM DEPTH COORDINATES AND 5 SVPS WITH A
MAXIMUM OF 200 POINTS IN A SVP. EACH SVP MUST REACH THE SAME
MAXIMUM DEPTH AS THE ADJACENT GIVEN SVPS.

[« NN VI -y VR S

10

DOUBLE.PRECISION ALPH,ANGLE(3000),ANGX,AQ,B,BDEP(150),BETA,BQ,
BRAN(150),CQ,CSTH,CSTHX,CSTH2,D(6,100),DD,DDEPTH,DELR,DELX,DELY,
DEP(3000),DEPMIN,DISC,DM,DR,DRFT,G(6,100),GAM,GC,GI,GI2,GRAD,P,
P2,P3,P4,R(3000),RA,RC,RC2,RMAX,RMAXL,RSVP(6),SAL(6,100),SC,SD,
SITH,SITHX,SITH2,SLOPE(150),SR,T(6,100),TATH, TANTH, TANTHX,TC,TC2,
TC3,TC4,TD,TEMP, TEM2,TEM3,TEM4,TF(6,100), THONE,TR,V(6,100),VC,VP,
VS,VSTP,VT,X,XBRAN,XP,Y,WV(6,100)

INTEGER*2 MA(1000),MB(1000),MC(i000)

INTEGER IGSVP(6,250),NPSVP(6),GRAPH/0/

REAL DQ(6,1000),QD(6),PI/3.141593/

LOGICAL*1 TITLE(40),ALPD(20),TSVP(5)

FUNC(A,B,C,D,E) = A + (B ~ C)*(E = A)/(D = C)

DATA TSVP/’'S°,"V","P’," */

CALL NOPRQ

CALL INITQ(MA,MB,MC,DQ,10G0)

READ(5,701) TITLE

HTMIN=0.00

HTMAX=100.0

READ(5,/02) NRSVPS,NRBOT ,METER,NAUT,DELR,NOUT,NEWSVP ,NOPR,NOAD,

1 NRAN,RANINC,RANL,NDEP,DEPINC,DEPL,NSV,SVINC,SVL,SVMIN,RANGE

14

16

20

IF(NOUT.LT.71) GO TO 14
CALL STSWQ(564,71)

IF(NOAD.LT.1) GO TO 16

READ(5,701) ALPD

IF(NEWSVP.LT.1) GO TO 133

DO 128 NR = 1,NRSVPS

READ(5,703) NODEP,NODFT,NOTEMP,NOTF,NOVEL,NOVFT,NOSAL

NSVP = 1

READ(S5,704) D(NR,NSVP),TF(NR,NSVP),WV(NR,NSVP),SAL(NR,NSVP),

1 IGSVP(NR,NSVP),6NOMO

24
97
48

D(NR,NSVP)=HTMAX~(D(NR,NSVP)-HTMIN)

IF(NOMO.GT.0) GO TO 24

NSVP = NSVP +

GO TO 20

DO 97 I=],NSVP
V(NR,I)=331.4*%(DSQRT(1.0+0.00366*TF(NR,I1)))+WV(NR,I)
J = NSVP -~ 1

c
C CALCULATE VELOCITY GRADIENTS
C

po 103 I = 1,J
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107
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G(NR,I) = (V(NR,I+l) - V(NR,I))/(D(NR,I+1) = D(NR,I))
IF(DABS(G(NR,I)).GE.0.0002) GO TO 103

G(NR,I) = 0.0
CONTINUE

G(NR,NSVP) = G(NR,NSVP-1)

IB = 1

NPAGE = |

WRITE(6,705) NPAGE,TITLE,NR,NSVP
IF(NOVEL.LT.l) GO TO 110
WRITE(6,706)

WRITE(6,707) NR

IL = IB + 21

IF(IL.LE.J) GO TO 114

IL = J

IF(NOTEMP.GT.0) GO TO 117
WRITE(6,708) (D(NR,I),TF(NR,I),SAL(NR,I),V(NR,TI),G(NR,I),

1 I = IB,IL)

(
[}

GO TO 118

117 WRITE(6,709) (D(NR,I),V(NR,L),G(NR,I), I = IB,IL)

'18 IB = IL + 1
IF(IB.GT.J) GO TO 123
WRITE(6,710)
NPAGE = NPAGE + 1
GO TO 107

123 IF(NOTEMP.GT.0) GO TO 126
WRITE(6,708) D(NR,NSVP),TF(NR,NSVP),SAL(NR,NSVP),V(NR,NSVP)
GO TO 127

126 WRITE(6,709) D(NR,NSVP),V(NR,NSVP)

127 NPSVP(NR) = NSVP

128 CONTINUE

LABEL PLOTS khkhkhkhkkkkhkhhkrrkkhhAhdhkhhhkhhhhkrhkhkkkk
DO 132 I = 1,NSVP
D(NRSVPS+1,I) = D(NRSVPS,I)
G(NRSVPS+1,I) = G(NRSVPS,I)

132 V(NRSVPS+1,I) = V(NRSVPS,I)

133 DISH = 0.5%(RANL + FLOAT(NRSVPS)*(SVL + 1.0))
CALL XFSTQ(DISH,1.6,0.24,0.26,0.0,0.0,QD)
CALL LABLQ(TITLE,-40,QD,GRAPH,40)
DISSR = RANL/2.0
IF(NOAD.LT.1) GO TO 143
CALL XFSTQ(DISSR - 1.7,0.95,0.18,0.20,0.0,0.0,QD)
CALL LABLQ('SOUND RAY PATHS - INTENSITY CONTOURS’,-38,QD,GRAPH,38)
CALL XFSTQ(DISSR + 3.7,0.95,0.15,0.16,0.0,0.0,QD)
CALL LABLQ(ALPD,-20,QL,CRAPH,20)
GO TO 145

143 CALL XFSTQ(DISSR,0.95,0.18,0.20,0.0,0.0,QD)
CALL LABLQ( SOUND RAY PATHS',-15,QD,CRAPH,L1S)

145

¢ LL XFSTQ(DISSR,0.6,0.18,0.29,0.0,0.0,0QDb)
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IF(NAUT.EQ.0) GO TO 149

CALL LABLQ(’RANGE - NAUTICAL MILES’,-22,QD,GRAPH,22)
GO TO 150

CALL LABLQ('RANGE - METERS’,-14,QD,GRAPH,14)

CALL XFSTQ(0.0,0.0,1.0,1.0,0.0,0.0,QD)

CALL AXISQ(RANL,NRAN,0.0,RANINC,-0.13,~1,QD,GRAPH)
CALL DISPQ(GRAPH,200.0)

CALL REMVQ(GRAPH)

DELSV = FLOAT(NSV)*SVINC/SVL

DELDEP = FLOAT(NDEP)*DEPINC/DEPL

DELRAN = FLOAT(NRAN)*RANINC/RANL

C DRAW SOUND VELOCITY PROFILES

165
166

191

194

DO 194 M = 1,NRSVPS

AM = M = 1

DISSV = RANL + SVL/2.0 + 1.0 + AM*(SVL + 1.0)
CALL XFSTQ(DISSV,0.99,0.18,0.20,0.0,0.0,QD)
IF(NRSVPS.LT.2) GO TO, 165

CALL EDINCH(M,TSVP(5),1)

CALL LABLQ(TSVP,-5,QD,GRAPH,S)

GO TO 166

CALL LABLQ(’SVP’,-3,QD,GRAPH,3)

CALL XFSTQ(DISSV,0.55,0.18,0.20,0.0,0.0,QD)

CALL LABLQ( VELOCITY - M/SEC’,-17,QD,GRAPH,17)
DISVP = RANL + 1.0 + AM*X(SVL + 1.0)

CALL XFSTQ(DISVP,0.0,1.0,1.0,0.0,0.0,QD)

CALL AXISQ(SVL,NSV,SVMIN,SVINC,-0.13,~1,QD,GRAPH)
DISSD = RANL + SVL + 1.0 + AM*(SVL + 1.0)

CALL XFSTQ(DISSD,0.0,1.0,1.0,1.5*%*P1,0.0,QD)

CALL AXISQ(DEPL,NDEP,0.0,DEPINC,-0.13,-1,QD,GRAPH)
DISDH = DISSD + 0.52

DISD = DEPL/2.0

CALL XFSTQ(DISDH,-DISD,0.18,0.20,1.5*%PI,0.0,QD)
CALL LABLQ('HEIGHT - METERS’,~-15,QD,GRAPH,15)
DSVP = RANL + (V(M,1) = SVMIN)/DELSV + 1.0 + AM*(SVL+1.0)
CALL XFSTQ(DSVP,~0.02,0.18,0.20,0.0,0.0,QD)

CALL LABLQ(’0’,~1,QD,GRAPH,1)

CALL ADPTQ(DSVP,0.0,1,GRAPH)

NSVP = NPSVP(M)

DO 191 I = Z,NSVP

DSVP = RANL + (V(M,I) - SVMIN)/DELSV + 1.0 + AM*(SVL + 1.0)
DEPP = - D(M4,I)/DELDEP

CALL ADPTQ(DSVP,DEPP,!,GRAPH)

IF(IGSVP(M,I).LT.1) GO TO 191

CALL XFSTQ(DSVP,DEPP - 0.02,0.18,0.20,0.0,0.0,QD)
CALL LABLQ(’0’,-1,QD,GRAPH,1)

CALL ADPTQ(DSVP,DEPP,1,GRAPH)

CONTINUE

CALL DISPQ(GRAPH,200.0)

CALL REMVQ(GRAPH)

CONTINUE
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209

217

227
228

231
232

911

¢ LI

237
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CALL ADPTQ(RANL,0.0,0,GRAPH)
IF(RANGE.LE.U.0) GO TO 19v

CALL ADPTQ(RANGE/DELRAN,-DEPL,O,GRAPH)

CALL ADPTQ(RANGE/DELRAN,0.0,1,GRAPH)

CALL XFSTQ(0.0,0.0,1.0,1.0,1.5%P1,0.0,QD)
CALL AXISQ(DEPL,NDEP,0.0,DEPINC,0.13,~1,QD,GRAPH)
CALL XFSTQ(-0.66,~-DISD,0.18,0.20,1.5*P1,0.0,QD)
CALL LABLQ( HEIGHT - METERS®,-15,QD,GRAPH,15)
IF(NRSVPS.LT.2) GO TO 232

READ(5,711) (RSVP(I), I = ],NRSVPS)

DO 209 1 = 2,NRSVPS

RSV = RSVP(I)/DELRAN

CALL ADPTQ(RSV,~ DEPL - 1.0,0,GRAPH)

CALL ADPTQ(RSV,0.0,1,GRAPH)

CONTINUE

DISVP = DEPL + 1.0

NRSVPM = NRSVPS =~ 1

DO 217 I = 1,NRSVPM

RSV = 0,5*%(RSVP(I+1) + RSVP(I))/DELRAN

CALL EDINCH(I,TSVP(5),1)

CALL XFSTQ(RSV,-DISVP,0.18,0.20,0.0,0.0,QD)
CALL LABLQ(TSVP,-5,QD,GRAPH,S)

CONTINUE

CALL EDINCH(NRSVPS,TSVP(S5),1)

RSV = O0.5*(RANL*DELRAN + RSVP(NRSVPS))/DELRAN
CALL XFSTQ(RSV,-DISVP,0.16,0.16,0.0,0.0,QD)
CALL LABLQ(TSVP,-5,QD,GRAPH,S5)

CALL DISPQ(GRAPH,200.0)

CALL REMVQ(GRAPH)

IF(NAUT.EQ.Q0) GO TO 227

WRITE(6,712) TITLE

GO TO 228

WRITE(6,713) TITLE

WRITE(6,714) (I,RSVP(I), I = l,NRSVPS)
IF(NAUT.EQ.0) GO TO 232

DO 231 I = ),NRSVPS

RSVP(I) = 6080.0*RSVP(1)/3.0

IF(NRBOT.LE.O) GO TO 264

READ(5,715) (BDEP(I),BRAN(I), I = 1,NRBOT)
DO Y1l I=1,NRBOT
BDEP(I)=HTMAX-(BDEP(I)-HTMIN)
IF(METER.EQ.}) GO TO 238
NE ADDED BDEP STAYS AS METERS

DO 237 I = 1,NRBOT

ID = 328.084*BDEP(1I)

BDEP(I) = DFLOAT(ID)/100.0

238 XD = 200.0*BRAN(1)/DELRAN

YD = - 200.0*BDEP(1)/DELDEP
CALL DRAWQ(XD,¥YD,0)
DO 245 I = 2,NRBOT
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260

264
265
267

270

274

278

281

284

286

289
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XD = 200.0*BRAN(I)/DELRAN
YD = - 200.0*BDEP(I1)/DELDEP

CALL DRAWQ(XD,YD,1)

CONTINUE

CALL GDMPQ

IF(NAUT.EQ.0) GO TO 250

DO 249 I = | ,NRBOT

BRAN(I) = 6080.0*BRAN(I)/3.0
WRITE(6,716) TITLE

DEPMIN = BDEP(1)

IM = NRBOT =~ 1

DO 260 I = 1,IM

IP = I + 1]

SLOPE(I) = (BDEP(I) - BDEP(IP))/(BRAN(IP) - BRAN(I))
XBRAN = 3,0*BRAN(I)/6080.0
WRITE(6,717) BDEP(L),XBRAN,BRAN(I),SLOPE(L)
IF(DEPMIN.LT.BDEP(IP)) GO TO 260
DEPMIN = BDEP(IP)

CONTINUE

XBRAN = 3,0*BRAN(NRBOT)/6080.0
WRITE(6,717) BDEP(NRBOT),XBRAN,BRAN(NRBOT)
GO TO 265

DEPMIN = 100000.0

IF(NAUT.EQ.0) GO TO 267

DELR = 6080.0*DELR/3.0

NRSVPS = NRSVPS + 1|

NPSVP(NRSVPS) = NPSVP(NRSVPS-1)
NRAY = |

READ(5,718) SD,NOSUR,NOBOT,RA,RMAX
SD=HTMAX-(SD=HTMIN)
IF(RMAX.LE.0.0) GO TO 611
IF(NAUT.EQ.0) GO TO 274

RMAX = 6080.0*RMAX/3.0
RSVP(NRSVPS) = RMAX + 3000.0
IF(METER.EQ.0) GO TO 278

ID = 328.084*SsD

SD = DFLOAT(ID)/100.0

NSVP = NPSVP(1)

DO 281 I = 1,NSVP

IF(SD - D(1,1))286,284,281
CONTINUE

WRITE(6,719) SD,D(1,NSVP)

GO To 270

K =1

GO TO 311

K =1

J=1-=-1

NR = ]

NPSVP(NR) = NPSVP(NR) + 1

NSVP = NPSVP(NR)

———— e
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311

330

333

335
336

338
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GC = G(NR,J)

X = (SD = D(NR,J))/(D(NR,I) = D(NR,J))
VC = V(NR,J) + X*(V(NR,I) - V(NR,J))
KB = I + 1

KOUNT = 0

DO 303 M = KB,NSVP

MK = NSVP - KOUNT

MN = MK = 1

D(NR,MK) = D(NR,MN)

G(NR,MK) = G(NR,MN)

V(NR,MK) = V(NR,MN)

IGSVP(NR,MK) = IGSVP(NR,MN)

KOUNT = KOUNT + 1

D(NR,I) = SD

G(NR,I) = GC

V(NR,I) = VC

IGSVP(NR,I) = O

NR = NR + 1

IF(NR.GT.NRSVPS) GO TO 31!
IF(NPSVP(NR).GE.K) GO TO 289
KREST = 0

NOANG = 0

NOFIN = 0O

NOM = 0

NR = 1

ANGLE(l) = RA

DEP(1) = SD

R(1) = 0.0

L =2

NSVP = NPSVP(NR)

THONE = 0.01745329252%RA

CSTH = DCOS(THONE)

SITH = DSIN(THONE)

TANTH = SITH/CSTH

VS = V(1,K)

SR = CSTH/VS

GI = G(1,K-1)

GI2 = G(1,K)

GO TO 335

IF(K.EZ.1) GO TO 333

GI = FUNC(G(NR,K=-1),R(L=1),RSVP(NR),RSVP(NR+1),G(NR+1,K=1))
IF(DABS(GI).LT.0.0002) GI = 0.0
GI2 = FUNC(G(NR,K),R(L-1),RSVP(NR),RSVP(NR+1),G(NR+1,K))
1F(DABS(G12).LT.0.0002) GI2 = 0.0
IF(SITH)348,336,338

'F T.NPSVP(NR).AND.GI2.LT.0.0) GO TO 348
. .E.1.0R.GI.LE.0.0) GO TO 366

o + 1.0

K = K -1

IF(K.GCT.0) GO TO 346




343

346

348

353
354

366

373

382

384

389
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IF(NOSUR.GT.0) GO TO 526
K=K+ 1

SITH = - SITH

TANTH = - TANTH

GO TO 330

GRAD = GI

GO TO 354

C=-1.0

K= K + 1

IF(K.LE.NSVP) GO TO 353

K = K -1

IF(NOBOT)343,343,526

GRAD = GI2

IF(GRAD.NE.0.0) GO TO 373

TATH =« DABS(SITH/CSTH)
IF(TATH.LT.0.001l) GO TO 366

DD = DABS(D(NR,K) - DEP(L-1))
DRFT = DD/TATH

DR = DRFT

SITH2Z = SITH

CSTH2 = CSTH

TANTH2 = TANTH

ANGLE(L) = ANGLE(L~-1)

DEP(L) = D(NR,K)

GO TO 401

R(L) = R(L~1) + DELR

DEP(L) = DEP(L-1)

ANGLE(L) = 0.0

SITH2 = SITH

CSTH2 = CSTH

TANTH2 = TANTH

IF(DEP(L) ~ DEPMIN)S14,414,414
VS = VS + GRAD*(D(NR,K) = DEP(L-1))
CSTH2 = SR*VS

B = 1,0 - CSTH2%#*2

Y = DSQRT(DABS(B))
IF(Y.GE.0.001) GO TO 382

CSTH2 = 1.0

SITH2 = 0.0

TANTH2 = 0.0

GO TO 384

IF(B.LT.0.0) GO TO 393

SITH2 = (C#*Yy

DR = DABS((SITH - SITH2)/(SR*GRAD))
ANGLE(L) = 57.295779S1*DARSIN(SITH2)
IF(DABS(ANGLE(L)).LE.85.0) GO TO 389
NOANG = |

GO TO 527

DEP(L) = D(NR,K)

R(L) = R(L~1) + DR
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TANTH2 = SITH2/CSTH2

GO TO 402

KREST = |

DDEPTH = (1.0 = CSTH)/(SR*GRAD)

VS = VS - GRAD*(D(NR,K) - DEP(L-1))
IC = C

K = K + IC

ANGLE(L) = 0.0

DEP(L) = D(NR,K) + DDEPTH

DR = DABS((SITH/(SR*GRAD)))

R(L) = R(L-1) + DR
IF(DEP(L).GE.DEPMIN) GO TO 414

L =L +1

IF(KREST.EQ.0) GO TO 515

DEP(L) = D(NR,K)

ANGLE(L) = - ANGLE(L-2)

R(L) = R(L-1) + DR

SITH2 = - SITH

CSTH2 = CSTH

TANTH2 = -~ TANTH

IF(KREST.EQ.1) KREST = 0
IF(DEP(L).GE.DEPMIN) GO TQO 414

GO TO 514

DO 418 I = 2,NRBOT
IF(R(L-1).GT.BRAN(I)) GO TO 418

IBOT = I - 1

GO TO 420

CONTINUE

GO TO 514

RC = DABS(BRAN(IBOT) - R(L))

RC2 = DABS(BRAN(IBOT+l) -~ R(L))
IF(RC.LT.0.1.AND.DEP(L).EQ.BDEP(IBOT)) GO TO 425
IF(RC2.GE.0.1) GO TO 427
IF(DEP(L).NE.BDEP(IBOT+1)) GO TO 427
NOM = |

GO TO 527

ANGX = 0.01745329252*ANGLE(L~-1)
SITHX = DSIN(ANGX)

CSTHX = DCOS(ANGX)

TANTHX = SITHX/CSTHX
IF(SITHX.LT.0.0) GO TO 435
IF(DEP(L-1).GT.BDEP(IBOT)) GO TO 434
IF(DEP(L-1).LT.BDEP(IBOT+1)) GO TO 511
IF(SLOPE(IBOT))511,511,441
IF(DEP(L).GT.BDEP(IBOT)) GO TO 441
IF(DEP(L).GT.BDEP(IBOT+1l)) GO TO 441

IF(SLOPE(1BOT).EQ.0.0.AND.DEP(L).EQ.BDEP(IBOT)) GO TO 477 \

IF(ANGLE(L).NE.0.0) GO TO 511
KREST = |
GO TO 511



441

446

457
458

474
475

477

486
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DM = BDEP(IBOT) - DEP(L-1) -~ SLOPE(IBOT)*(R(L-1) - BRAN(IBOT))
IF(GRAD.NE.0.0) GO TO 446
IF(SLOPE(IBOT).EQ.TANTHX) GO TO S11
DELX = -~ DM/(TANTHX ~ SLOPE(IBOT))
GO TO 458

CAM = 1.0/(SR*GRAD)

ALPH = = GAM*SITHX

BETA = - GAM*CSTHX

AQ = SLOPE(IBOT)**2 + 1.0

BQ = 2.0*(- SLOPE(IBOT)*(DM ~ BETA) =- ALPH)
CQ = ALPH*%*2 + (DM - BETA)**2 <~ GAM**2
DISC = BQ#**2 - 4,0%AQ*CQ
IF(DISC.LT.0.0) GO TO 511
IF(GRAD.GT.0.0) GO TO 457

DELX = (- BQ + DSQRT(DISC))/(2.0%AQ)
GO TO 458

DELX = (~ BQ - DSQRT(DISC))/(2.0*AQ)
IF(DABS(DELX -~ DR).LE.O.1) GO TO 474
IF(DELX.LT.0.0) GO TO 511

XP = R(L-1) + DELX
IF(XP.LT.BRAN(IBQOT)) GO TO 511
IF(XP.GT.BRAN(IBOT+1)) GO TO 511
IF(XP.GT.R(L)) GO TO 511

DELY = - DELX*SLOPE(IBOT) + DM

R(L) = XP

DEP(L) = DEP(L-1) + DELY

VS = ¥S - GRAD*(D(NR,K) - DEP(L))
CSTH2 = SR*VS

IF(CSTH2.GT.1.0) GO TO 4/5
IF(ANGLE(L-1).EQ.0.0) C = - C

SITH2 = C*DSQRT(1.0 = CSTH2%*%2)
TANTH2 = SITH2/CSTH2

ANGLE(L) = 57,29577951*DARSIN(SITH2)
IF(DABS(ANGLE(L)).LE.85.0) GO TO 477
NOANG = 1

GO TO 527

IF(R(L).GT.RMAX) GO TO 527
IF(NOBOT.EQ.1l) GO TO 527

L =L +1

DEP(L) = DEP(L-1)

R(L) = R(L-1)

ANGLE(L) = 114.59156*DATAN(SLOPE(IBOT)) - ANGLE(L-1)
IF(DABS(ANGLE(L)).LE.85.0) GO TO 486
NOANG = 1

GO TO 527

THONE = 0.01745329*ANGLE(L)

SITH = DSIN(THONE)

CSTH = DCOS(THONE)

TANTH = SITH/CSTH

IF(GRAD.EQ.0.0) GO TO 497
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IF(KREST.EQ.O0) GO TO 495
KREST = 0 )

IF(SITHZ.LE.U.0.AND.SITH.GT.0.0) K

GO TO 497

IF(SITH.GT.0.0.AND.SITH2.G6T.0.0) K
IF(SITH.LT.0.0.AND,.SITH2.LT.0.0) K

L=L+ 1
SR = CSTH/VS
IF(GRAD.NE.O.0) GO TO 330

IF(SITH.GT.0.0.AND.SITH2.LT.0.0) K

DD = DEP(L-1) - D(NR,K)

DRFT = DABS(DD/TANTH)

DR = DRFT

DEP(L) = D(NR,K)

R(L) = R(L-1) + DR

ANGLE(L) = ANGLE(L~-1)

SITH2 = SITH

CSTH2 = CSTH

TANTHZ = TANTH

GO TO S14
IF(R(L).LT.BRAN(IBOT+1)) GO TO 514
IBOT = IBOT + 1

GO TO 42/

L =L +1

IF(L.LT.4UUU) GO TO 918
NOFIN = 1}

GO TO 52¢

IF(R(L-}).GE.RMAX) GO TO 526
IF(XREST.EQ.1) GO TO 405
SITH = SITH2

CSTH = CSTH2

TANTY = TANTH2
IF(R(L~1).LE.RSVP(NR+1)) 60 TO 330
NR = NR + }

IF(NR.LT.NRSVPS) GO TO 330
L=11L-1

IF(NAUT.EQ.Q) GO TO 530

DO 529 I = 1,L

R(I) = 3,0%R(I)/6080.0
IF(NOPR.GT.0) GO TO 549

1B = }

NPAGE = }

WRITE(6,720) NPAGE,TITLE,SD,RA
IF(NAUT.EQ.0) 60 TO 537
WRITE(6,721)

GO TO 538

WRITE(6,722)

IL = IB + 43

IF(IL.LE.L) GO TO 541

IL = L

- e
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541

544

547
549

551
552

554
556

558

561 DEP(L) = DEP(L-1) + (DEP(L) - DEP(L-1))*(RMAX - R(L-1))/(R(L)

566
569

571
572

573

582
583

587

WRITE(6,723) (DEP(I),R(1),ANGLE(I),

IB = IL + 1

IF(IB - L)544,547,552
WRITE(6,710)

NPAGE = NPAGE + 1

GO TOo 533

WRITE(6,723) DEP(L),R(L),ANGLE (L)

GO TO 552
IF(NOMO.GT.1l) GO TO 55
WRITE(6,724) TITLE,SD
NOMO = NOMO + 1
IF(NOFIN.EQ.0) GO TO 5
WRITE(6,725) RA
IF(NOM.EQ.0) GO TO 556
WRITE(6,726) RA
IF(NOANG.EQ.O) GO TO 5
WRITE(6,727) RA
WRITE(6,728) RA,L
RMAXL = RMAX + 0.S*RAN
IF(R(L).LE.RMAXL) GO T

1 R(L=-1))

R(L) = RMAX
IF(R(L-1).LE.RMAX) GO
L=L-1

GO TO 561
IF(NRAY.LT.2) GO TO 57
IF(NOBOT.LT.1l) GO TO 5
L=1L-1

NRAY = 1

GO TO 572

NRAY = 2

PRAN = R(L)/DELRAN + 0
PDEP = = DEP(L)/DELDEP
IF(NRAY.LT.2) GO TO 60
XD = 200.0%R(1)/DELRAN
YD = = 200.0*%DEP(1)/DE
CALL DRAWQ(XD,YD,0)

IB = 2

IF(L.GT.990) GO TO 582
IL = L

GO TO 583

IL = 990

DO 587 1 = 1B,IL

XD = 200.0*R(I)/DELRAN
YD = - 200.0%DEP(I)/DE
CALL DRAWQ(XD,YD,1)
CONTINUE

CALL GDMPQ

IB = IL + 1

-Bll-
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54

58

INC
0 566

TO 566

1
69
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LDEP
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IF(IB.GT.L) GO TO 595
IL = IL + 990
IF(IL.LE.L) GO TO 583
IL = L
GO TO 583
595 IF(NRAY.LT.2) GO TO 270
596 CALL XFSTQ(PRAN,PDEP,0.11,0.13,0.0,0.0,QD)
CALL NMBRQ(RA,1l,1,QD,GRAPH)
CALL DISPQ(GRAPH,200.0)
CALL REMVQ(GRAPH)
GO TO (575,270),NRAY
601 N = L/2
DO 609 I = 1,N
K =L -1+1
TR = R(I)
TD = DEP(I)
R(I) = R(K)
DEP(I) = DEP(XK)
R(K) = TR
609 DEP(K) = TD
GO TO 596
611 READ(5,704) DIST
IF(DIST.LE.0.Q) GO TO 615
CALL ADPTQ(DIST,0.0,0,GRAPH)
GO TO 616
615 CALL ADPTQ(0.0,0.0,0,GRAPH)
616 CALL DISPQ(GRAPH,200.0)
CALL M00VQ(200.0%DIST,0.0)
CALL REMVQ(GRAPH)
NOMO = 1
IF(DIST.GT.0.0) GO TO 10
WRITE(5,729)
STOP
701 FORMAT(40A1)
702 FORMAT(I1,13,2I1,F4.0,12,311,3(12,F8.2,F5.1),2F10.4)
703 FORMAT(7I1)
704 FORMAT(4F10.4,211)
705 FORMAT(lH1,121X,°PAGE’,I3,/1H0,88%X,40Aa1,/89X"NUMBER OF POINTS IN‘,
1 * SVP’,12,° = “,14)
706 FORMAT(89X,’VELOCITIES COMPUTED’)
707 FORMAT(1H0,61X,°SVP *,Il,/1HO, 33X, DEPTH TEMPERATURE*, 3X,
1 “SALINITY VELOC ITY VELOCITY GRADIENT®/35X,’ (FT)’,6X,
2 "(DEGC F)’,6X,’ (PPT)",5X,” (FT/SEC)’,6X," (FT/SEC/FT)’ /)
708 FORMAT(LH ,29X,F9.1,2F12.2,F13.3,/80X,F12.7)
709 FORMAT(!H ,29X,F9.1,25X,F12.3,/80X,F12.7)
710 FORMAT (140, 58X,’ (CONTINUED)’)
711 FORMAT(6F10.4)
712 FORMAT(IH1,88%,40A1,/1H0,58%X,’SVP RANGES’/1#0,55X,°SvP’, 8X,
1 “RANGE’/68X,’ (NM)*)
713 FORMAT(IH1,88X,40Al,/1H0,58X,°SVP RANGES"/1H0, 55X,°SVP’, 8%,
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1 “RANGE’/67X,° (YDS)’)
714 FORMAT(1HO,55X,12,Fl&4.1)
715 FORMAT(2F10.4)
716 FORMAT(IH!,88X,40A1,/1H0,47X, BOTTOM DEPTHS, RANGES AND SLOPES”
1 /1HO0, 44X, DEPTH’, 12X, RANGE®, 12X, SLOPE“/46X,” (FT)*,7X,” (NM) *,7X,
2 “(¥Yps)*
717 FORMAT(40X,F11.1,F10.1,F12.1,/73X,F11.4)
718 FORMAT(F8.2,2I1,2F10.4)
719 FORMAT(lH1, 30X, REQUESTED DEPTH OF’,F7.1,” FT. 1S GREATER THAN °,
1 “LAST GIVEN SVP DEPTH OF°,F7.1,° FT.")
720 FORMAT(lH1,121X,°PAGE’,I3,/1H0,88X,40A1,/89X, SOURCE DEPTH =’,
1 F8.1,° FT.’/89X, INITIAL ANGLE =°,F8.3,° DEG.’/1HO0,56X,”SOUND RAY
2 PATH’/1HO0, 49X, DEPTH’,7X, RANGE’, 7X, ANGLE")
721 FORMAT(51X,’(FT)’,8X,’ (NM)*,7X,’ (DEG)* /)
722 FORMAT(S51X,’ (FT)’,7X,’ (¥YDS)’,7X,” (DEG)’ /)
723 FORMAT(45X,F10.1,F12.1,F12.2)
724 FORMAT(1H1!,88X,4041,/89X,’SOURCE DEPTH =’,F8.1,° FT.’/1HO, 49%,
1 "NUMBER OF POINTS IN RAY PATHS AND’/40X, RAYS THAT TERMINATE *,
2 “BEFORE REACHING DESIRED RANGE’)
725 FORMAT(1HO,40X,FS5.1,° DEG. RAY TERMINATED. MORE THAN 4000 POINTS’)
726 FORMAT(1HO,40X,F5.1,° DEG. RAY TERMINATED. HIT BOTTOM BREAK.’)
727 FORMAT(140,40X,F5.1,° DEG. RAY TERMINATED. ANGLE GREATER THAN 857,
1 ° DEG.’)
728 FORMAT (140, 40X, NUMBER OF POINTS IN’,FS5.1,° DEG. RAY =°,I5)
729 FORMAT(1H1,50X,”RUN COMPLETED®)
END
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The input for the eigenray and ray-tracing programs is described

First, the input to the eigenray routine contained in Appendix

given.

Eigenray Program Operation - Sequence of Data Cards

ll

2.

3.

Columns Format
Title card
1=40 title 10A4
Sound velocity profile control card 911
0 meters
1 NDRT = depth given in
l feet
0 m/sec
2 NVFT = sound velocity in
1 ft/sec
0
3 NIF = . temperature given in degrees
0 m/sec
4 NWV = wind velocity given in
1 ft/sec
(0] meters
5 WRFT = range given in
i feet
0 calculated
6 IVEL = sound velocity
1 given
0 not given
7 ITEMP = temperature
1 given
v} not given
8 IWV = wind velocity
1 given
0 not given
9 IRHM = relative humidity
1 given

Sound

velocity profile data cards - must be given as 4F10.4,1x,11

depths from highest level to ground surface

1-10 DEP =~ depth

11-20 TEMP - temperature

21-30 VEL = sound velocity

31-40 WV - wind velocity

42 NOMO =1 to indicate last SVP data card

R IR




_CZ-
4., Ground loss card I1,4X,2F5.1
1 NBL <~ number of runs with different ground losses
6-10 POR =~ nrorocity of ground
11-15 BL - ground loss coefficient
5 Time integration wiidow card F10.3
1-10 TWIN - time window
6. Ray path parameter card 7F10.3
1-10 SD - source depth
11-20 TD =~ target depth
21-30 RANGE = range from source to receiver
31-40 ANGMAX - maximum initial ray angle in degrees
41-50 ANGMIN - minimum initial ray angle
51-60 FREQ - frequency
61-70 RHM - relative humidity

All input must be consistant with the units specified in the

control card (2).

The input for the ray~-tracing routine is given here. It is noted
that the ray=-tracing routine graphics are system dependent. T.e data
to be plotted is output using the following packages: XFSTQ,LABLQ,
AXISQ, DISPQ, REMVQ, EDINCH, ADPTQ, DRAWQ, GDMPQ, NMBRQ, MOOVQ.

These are packages available in the PSU computer center’s accessible
library. The output is then plotted onto a Tektronix 4662 plotter
using the package CONTK.

Ray~Tracing Program Operation - Sequence of Data Cards
18 _LTORY:

Columns Format
1. Title card
1-40 title 40Al
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2. Sound velocity profile control card

1 NRSVP =~ number of SVP’s - maximum . 11
of 5
2~4 NRBOT -~ number of ground height 13
coordinates - maximum of 150
minimum of 2
5 METER = 1 all heights given in meters Il
6 NAUT = blank all ranges given in meters Il
7-10 DELR =~ distance ray travels when ray F4.0
angle 1is zero and there is no
refraction
11-12 NOUT = 7) I2

blank ~ uses SVP’s from previous rutil

13 NEWSVP =
1 - new SVP’s

14 NOPR = blank prints ray paths Il

1 does not print
15 NOAD = blank writes “SOUND RAY PATHS™ on giots

1 "SOUND RAY PATHS AND

INTENSITY CONTOURS"
and Alpha headings

16-17 NRAN <~ number of divisions on range scale I2
18-25 RANINC - increment on range scale - meters F8,2
26-30 RANL =~ length in inches of range scale F5.1
31-32 NDEP =~ number of divisions on height scale 12
33-40 DEPINC - increment on height scale - meters F8.2
41=45 DEPL - length in inches of height scale FS5.1
46~47 NSV - number of divisions on SVP scale I2
48-55 SVINC ~ increment on SVP scale - m/sec F8.2
56=-60 SVL = length in inches of SVP scale F5.2
61-70 SVMIN - minimum value on SVP scale F10.4

(generally 335 m/sec)
71-80 RANGE = range to reference line in meters F10.4

(if blank-no reference line printed)

3. Alpha heading card (omitted if NOAD 1is blank)
1-20 ALPD - graph heading 20al
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One set of cards 4 and 5 must be given for each sound velocity profile

4. SVP control card 711
1 NODEP = blank
2 NODFT = 1
3 NOTEMP = blank temperature given
1 sound velocity in still air given
4 NOTF = }
5 NOVEL = blank
6 NOVFT = 1
7 NOSAL = blank
5. Sound velocity profile cards - maximum of 250 4F10.4,211
for each SVP
1-10 D = height meters
11-20 TF =~ temperature Celsius
21-30 WV - wind velocity m/sec
31-40 SAL - blank
41 1osvp = Jronk -aterpolaced o p value
1 given
42 NOMO - blank {ndicates not last SVP card
1 last SVP card

6. Location of SVP’s card (first always 0.0) S5F10.4
(omitted if only one SVP)
1-10 RSVP(1l) = 0.0

11-20 RSVP(N) - locates SVP neters
etcetera
/« Ground height coordinate cards (must be NRBOT cards, 2F10.4

value given on card 2) (must be in order of

increasing range)

1-10 BDEP - height neters
11-20 BRAN -~ range meters
cal g
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8. Ray parameter cards
1-8 SD -~ source height meters
9 NOSUR = 1
10 NOBOT = blank
11-20 RA =~ initial angle in degrees
21-30 RMAX ~ maximum range in meters

9. Blsnk card

F8.2,211,2F10.4










